These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 34314603)

  • 21. Organic compounds in carbonaceous meteorites.
    Sephton MA
    Nat Prod Rep; 2002 Jun; 19(3):292-311. PubMed ID: 12137279
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Detecting Nonvolatile Life- and Nonlife-Derived Organics in a Carbonaceous Chondrite Analogue with a New Multiplex Immunoassay and Its Relevance for Planetary Exploration.
    Moreno-Paz M; Gómez-Cifuentes A; Ruiz-Bermejo M; Hofstetter O; Maquieira Á; Manchado JM; Morais S; Sephton MA; Niessner R; Knopp D; Parro V
    Astrobiology; 2018 Aug; 18(8):1041-1056. PubMed ID: 29638146
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Key scientific questions and key investigations from the first international conference on Martian phyllosilicates.
    Poulet F; Beaty DW; Bibring JP; Bish D; Bishop JL; Noe Dobrea E; Mustard JF; Petit S; Roach LH
    Astrobiology; 2009 Apr; 9(3):257-67. PubMed ID: 19400732
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The origin of organic matter in the Martian meteorite ALH84001.
    Becker L; Popp B; Rust T; Bada JL
    Adv Space Res; 1999; 24(4):477-88. PubMed ID: 11543335
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nuclear magnetic biosignatures in the carbonaceous matter of ancient cherts: comparison with carbonaceous meteorites.
    Gourier D; Delpoux O; Binet L; Vezin H
    Astrobiology; 2013 Oct; 13(10):932-47. PubMed ID: 24093546
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Combined Spectroscopic Analysis of Terrestrial Analogs from a Simulated Astronaut Mission Using the Laser-Induced Breakdown Spectroscopy (LIBS) Raman Sensor: Implications for Mars.
    Lalla EA; Konstantinidis M; Lymer E; Gilmour CM; Freemantle J; Such P; Cote K; Groemer G; Martinez-Frias J; Cloutis EA; Daly MG
    Appl Spectrosc; 2021 Sep; 75(9):1093-1113. PubMed ID: 33988039
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Quantitative analysis of binary and ternary organo-mineral solid dispersions by Raman spectroscopy for robotic planetary exploration missions on Mars.
    Demaret L; Hutchinson IB; Eppe G; Malherbe C
    Analyst; 2021 Nov; 146(23):7306-7319. PubMed ID: 34755725
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Carbon isotope composition of individual amino acids in the Murchison meteorite.
    Engel MH; Macko SA; Silfer JA
    Nature; 1990 Nov; 348(6296):47-9. PubMed ID: 11536470
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fullerenes: an extraterrestrial carbon carrier phase for noble gases.
    Becker L; Poreda RJ; Bunch TE
    Proc Natl Acad Sci U S A; 2000 Mar; 97(7):2979-83. PubMed ID: 10725367
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Carbonaceous meteorites contain a wide range of extraterrestrial nucleobases.
    Callahan MP; Smith KE; Cleaves HJ; Ruzicka J; Stern JC; Glavin DP; House CH; Dworkin JP
    Proc Natl Acad Sci U S A; 2011 Aug; 108(34):13995-8. PubMed ID: 21836052
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A search for endogenous amino acids in the Martian meteorite EETA79001.
    McDonald GD; Bada JL
    Geochim Cosmochim Acta; 1995 Mar; 59(6):1179-84. PubMed ID: 11540048
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A review of evidence for biological material in meteorites.
    Urey HC
    Life Sci Space Res; 1966; 4():35-59. PubMed ID: 11915888
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Eukaryotic Colonization of Micrometer-Scale Cracks in Rocks: A "Microfluidics" Experiment Using Naturally Weathered Meteorites from the Nullarbor Plain, Australia.
    Tait AW; Gagen EJ; Wilson SA; Tomkins AG; Southam G
    Astrobiology; 2020 Mar; 20(3):364-374. PubMed ID: 31873039
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The effects of ultraviolet light on the degradation of organic compounds: a possible explanation for the absence of organic matter on Mars.
    Oro J; Holzer G
    Life Sci Space Res; 1979; 17():77-86. PubMed ID: 12001969
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Formation and processing of organics in the early solar system.
    Kerridge JF
    Space Sci Rev; 1999; 90(1-2):275-88. PubMed ID: 11543289
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Carbonaceous meteorites as a source of sugar-related organic compounds for the early Earth.
    Cooper G; Kimmich N; Belisle W; Sarinana J; Brabham K; Garrel L
    Nature; 2001 Dec 20-27; 414(6866):879-83. PubMed ID: 11780054
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Accretion and differentiation of carbon in the early Earth.
    Tingle TN
    Chem Geol; 1998 May; 147(1-2):3-10. PubMed ID: 11543125
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Laser induced breakdown spectroscopy for elemental analysis in environmental, cultural heritage and space applications: a review of methods and results.
    Gaudiuso R; Dell'Aglio M; De Pascale O; Senesi GS; De Giacomo A
    Sensors (Basel); 2010; 10(8):7434-68. PubMed ID: 22163611
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Natural transfer of viable microbes in space.
    Mileikowsky C; Cucinotta FA; Wilson JW; Gladman B; Horneck G; Lindegren L; Melosh J; Rickman H; Valtonen M; Zheng JQ
    Icarus; 2000 Jun; 145(2):391-427. PubMed ID: 11543506
    [TBL] [Abstract][Full Text] [Related]  

  • 40. On the Habitability of Desert Varnish: A Combined Study by Micro-Raman Spectroscopy, X-ray Diffraction, and Methylated Pyrolysis-Gas Chromatography-Mass Spectrometry.
    Malherbe C; Hutchinson IB; Ingley R; Boom A; Carr AS; Edwards H; Vertruyen B; Gilbert B; Eppe G
    Astrobiology; 2017 Nov; 17(11):1123-1137. PubMed ID: 29039682
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.