These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 34314733)
1. In vitro inhibition of glutathione-S-transferase by dopamine and its metabolites, 3,4-dihydroxyphenylacetaldehyde and 3,4-dihydroxyphenylacetic acid. Crawford RA; Bowman KR; Cagle BS; Doorn JA Neurotoxicology; 2021 Sep; 86():85-93. PubMed ID: 34314733 [TBL] [Abstract][Full Text] [Related]
2. Comparison of Monoamine Oxidase Inhibitors in Decreasing Production of the Autotoxic Dopamine Metabolite 3,4-Dihydroxyphenylacetaldehyde in PC12 Cells. Goldstein DS; Jinsmaa Y; Sullivan P; Holmes C; Kopin IJ; Sharabi Y J Pharmacol Exp Ther; 2016 Feb; 356(2):483-92. PubMed ID: 26574516 [TBL] [Abstract][Full Text] [Related]
3. Metabolic stress in PC12 cells induces the formation of the endogenous dopaminergic neurotoxin, 3,4-dihydroxyphenylacetaldehyde. Lamensdorf I; Eisenhofer G; Harvey-White J; Hayakawa Y; Kirk K; Kopin IJ J Neurosci Res; 2000 May; 60(4):552-8. PubMed ID: 10797558 [TBL] [Abstract][Full Text] [Related]
4. Inactivation of glyceraldehyde-3-phosphate dehydrogenase by the dopamine metabolite, 3,4-dihydroxyphenylacetaldehyde. Vanle BC; Florang VR; Murry DJ; Aguirre AL; Doorn JA Biochem Biophys Res Commun; 2017 Oct; 492(2):275-281. PubMed ID: 28830811 [TBL] [Abstract][Full Text] [Related]
5. Inhibition of the oxidative metabolism of 3,4-dihydroxyphenylacetaldehyde, a reactive intermediate of dopamine metabolism, by 4-hydroxy-2-nonenal. Florang VR; Rees JN; Brogden NK; Anderson DG; Hurley TD; Doorn JA Neurotoxicology; 2007 Jan; 28(1):76-82. PubMed ID: 16956664 [TBL] [Abstract][Full Text] [Related]
6. Lipid peroxidation products inhibit dopamine catabolism yielding aberrant levels of a reactive intermediate. Rees JN; Florang VR; Anderson DG; Doorn JA Chem Res Toxicol; 2007 Oct; 20(10):1536-42. PubMed ID: 17887726 [TBL] [Abstract][Full Text] [Related]
7. Rotenone decreases intracellular aldehyde dehydrogenase activity: implications for the pathogenesis of Parkinson's disease. Goldstein DS; Sullivan P; Cooney A; Jinsmaa Y; Kopin IJ; Sharabi Y J Neurochem; 2015 Apr; 133(1):14-25. PubMed ID: 25645689 [TBL] [Abstract][Full Text] [Related]
8. Antioxidant-Mediated Modulation of Protein Reactivity for 3,4-Dihydroxyphenylacetaldehyde, a Toxic Dopamine Metabolite. Anderson DG; Florang VR; Schamp JH; Buettner GR; Doorn JA Chem Res Toxicol; 2016 Jul; 29(7):1098-107. PubMed ID: 27268734 [TBL] [Abstract][Full Text] [Related]
9. Inhibition and covalent modification of tyrosine hydroxylase by 3,4-dihydroxyphenylacetaldehyde, a toxic dopamine metabolite. Mexas LM; Florang VR; Doorn JA Neurotoxicology; 2011 Aug; 32(4):471-7. PubMed ID: 21514317 [TBL] [Abstract][Full Text] [Related]
10. Vesicular uptake blockade generates the toxic dopamine metabolite 3,4-dihydroxyphenylacetaldehyde in PC12 cells: relevance to the pathogenesis of Parkinson's disease. Goldstein DS; Sullivan P; Cooney A; Jinsmaa Y; Sullivan R; Gross DJ; Holmes C; Kopin IJ; Sharabi Y J Neurochem; 2012 Dec; 123(6):932-43. PubMed ID: 22906103 [TBL] [Abstract][Full Text] [Related]
11. Products of oxidative stress inhibit aldehyde oxidation and reduction pathways in dopamine catabolism yielding elevated levels of a reactive intermediate. Jinsmaa Y; Florang VR; Rees JN; Anderson DG; Strack S; Doorn JA Chem Res Toxicol; 2009 May; 22(5):835-41. PubMed ID: 19388687 [TBL] [Abstract][Full Text] [Related]
12. 3,4-Dihydroxyphenylacetaldehyde is the toxic dopamine metabolite in vivo: implications for Parkinson's disease pathogenesis. Burke WJ; Li SW; Williams EA; Nonneman R; Zahm DS Brain Res; 2003 Nov; 989(2):205-13. PubMed ID: 14556942 [TBL] [Abstract][Full Text] [Related]
13. 3,4-Dihydroxyphenylacetaldehyde potentiates the toxic effects of metabolic stress in PC12 cells. Lamensdorf I; Eisenhofer G; Harvey-White J; Nechustan A; Kirk K; Kopin IJ Brain Res; 2000 Jun; 868(2):191-201. PubMed ID: 10854571 [TBL] [Abstract][Full Text] [Related]
14. Role of Parkinson's Disease-Linked Mutations and N-Terminal Acetylation on the Oligomerization of α-Synuclein Induced by 3,4-Dihydroxyphenylacetaldehyde. Lima VA; do Nascimento LA; Eliezer D; Follmer C ACS Chem Neurosci; 2019 Jan; 10(1):690-703. PubMed ID: 30352158 [TBL] [Abstract][Full Text] [Related]
15. Catechol and aldehyde moieties of 3,4-dihydroxyphenylacetaldehyde contribute to tyrosine hydroxylase inhibition and neurotoxicity. Vermeer LM; Florang VR; Doorn JA Brain Res; 2012 Sep; 1474():100-9. PubMed ID: 22877852 [TBL] [Abstract][Full Text] [Related]
16. Determinants of buildup of the toxic dopamine metabolite DOPAL in Parkinson's disease. Goldstein DS; Sullivan P; Holmes C; Miller GW; Alter S; Strong R; Mash DC; Kopin IJ; Sharabi Y J Neurochem; 2013 Sep; 126(5):591-603. PubMed ID: 23786406 [TBL] [Abstract][Full Text] [Related]
17. Oligomerization and Membrane-binding Properties of Covalent Adducts Formed by the Interaction of α-Synuclein with the Toxic Dopamine Metabolite 3,4-Dihydroxyphenylacetaldehyde (DOPAL). Follmer C; Coelho-Cerqueira E; Yatabe-Franco DY; Araujo GD; Pinheiro AS; Domont GB; Eliezer D J Biol Chem; 2015 Nov; 290(46):27660-79. PubMed ID: 26381411 [TBL] [Abstract][Full Text] [Related]
19. Protein reactivity of 3,4-dihydroxyphenylacetaldehyde, a toxic dopamine metabolite, is dependent on both the aldehyde and the catechol. Rees JN; Florang VR; Eckert LL; Doorn JA Chem Res Toxicol; 2009 Jul; 22(7):1256-63. PubMed ID: 19537779 [TBL] [Abstract][Full Text] [Related]
20. Toxicity of a treatment associating dopamine and disulfiram for catecholaminergic neuroblastoma SH-SY5Y cells: relationships with 3,4-dihydroxyphenylacetaldehyde formation. Legros H; Dingeval MG; Janin F; Costentin J; Bonnet JJ Neurotoxicology; 2004 Mar; 25(3):365-75. PubMed ID: 15019299 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]