These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 34314782)

  • 1. Evolution of nanomedicines for the treatment of autoimmune disease: From vehicles for drug delivery to inducers of bystander immunoregulation.
    Yang Y; Santamaria P
    Adv Drug Deliv Rev; 2021 Sep; 176():113898. PubMed ID: 34314782
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Immunomodulatory and immunoregulatory nanomedicines for autoimmunity.
    Montaño J; Garnica J; Santamaria P
    Semin Immunol; 2021 Aug; 56():101535. PubMed ID: 34969600
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antigen-specific nanomedicines for the treatment of autoimmune disease: target cell types, mechanisms and outcomes.
    Yang Y; Santamaria P
    Curr Opin Biotechnol; 2022 Apr; 74():285-292. PubMed ID: 35007990
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Peptide-MHC-Based Nanomedicines for the Treatment of Autoimmunity: Engineering, Mechanisms, and Diseases.
    Serra P; Santamaria P
    Front Immunol; 2020; 11():621774. PubMed ID: 33574822
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antigen-Specific Tolerization and Targeted Delivery as Therapeutic Strategies for Autoimmune Diseases.
    Shakya AK; Nandakumar KS
    Trends Biotechnol; 2018 Jul; 36(7):686-699. PubMed ID: 29588069
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An All-in-One Nanomedicine Consisting of CRISPR-Cas9 and an Autoantigen Peptide for Restoring Specific Immune Tolerance.
    Luo YL; Liang LF; Gan YJ; Liu J; Zhang Y; Fan YN; Zhao G; Czarna A; Lu ZD; Du XJ; Shen S; Xu CF; Lian ZX; Wang J
    ACS Appl Mater Interfaces; 2020 Oct; 12(43):48259-48271. PubMed ID: 33070614
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of immunomodulators on the response induced by vaccines against autoimmune diseases.
    Marciani DJ
    Autoimmunity; 2017 Nov; 50(7):393-402. PubMed ID: 28906131
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polymer nanotherapeutics to correct autoimmunity.
    Su T; Feng X; Yang J; Xu W; Liu T; Zhang M; Ding J; Chen X
    J Control Release; 2022 Mar; 343():152-174. PubMed ID: 34990701
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoparticle-based autoantigen delivery to Treg-inducing liver sinusoidal endothelial cells enables control of autoimmunity in mice.
    Carambia A; Freund B; Schwinge D; Bruns OT; Salmen SC; Ittrich H; Reimer R; Heine M; Huber S; Waurisch C; Eychmüller A; Wraith DC; Korn T; Nielsen P; Weller H; Schramm C; Lüth S; Lohse AW; Heeren J; Herkel J
    J Hepatol; 2015 Jun; 62(6):1349-56. PubMed ID: 25617499
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Screening Immunomodulators To Skew the Antigen-Specific Autoimmune Response.
    Northrup L; Sullivan BP; Hartwell BL; Garza A; Berkland C
    Mol Pharm; 2017 Jan; 14(1):66-80. PubMed ID: 28043135
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantifying immunoregulation by autoantigen-specific T-regulatory type 1 cells in mice with simultaneous hepatic and extra-hepatic autoimmune disorders.
    Jamaleddine H; Santamaria P; Khadra A
    Immunology; 2020 Nov; 161(3):209-229. PubMed ID: 32687611
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Suppression of a broad spectrum of liver autoimmune pathologies by single peptide-MHC-based nanomedicines.
    Umeshappa CS; Singha S; Blanco J; Shao K; Nanjundappa RH; Yamanouchi J; Parés A; Serra P; Yang Y; Santamaria P
    Nat Commun; 2019 May; 10(1):2150. PubMed ID: 31089130
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combining antigen and immunomodulators: Emerging trends in antigen-specific immunotherapy for autoimmunity.
    Northrup L; Christopher MA; Sullivan BP; Berkland C
    Adv Drug Deliv Rev; 2016 Mar; 98():86-98. PubMed ID: 26546466
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adjuvants as Delivery Systems in Antigen-Specific Immunotherapies.
    Antúnez LR; Pressnall MM; Berkland CJ
    J Pharm Sci; 2019 Dec; 108(12):3831-3841. PubMed ID: 31526814
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering tolerance using biomaterials to target and control antigen presenting cells.
    Tostanoski LH; Gosselin EA; Jewell CM
    Discov Med; 2016 May; 21(117):403-10. PubMed ID: 27355336
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Therapeutic applications of nanomedicine in autoimmune diseases: from immunosuppression to tolerance induction.
    Gharagozloo M; Majewski S; Foldvari M
    Nanomedicine; 2015 May; 11(4):1003-18. PubMed ID: 25596076
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bridging the Knowledge of Different Worlds to Understand the Big Picture of Cancer Nanomedicines.
    Balasubramanian V; Liu Z; Hirvonen J; Santos HA
    Adv Healthc Mater; 2018 Jan; 7(1):. PubMed ID: 28570787
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Demystifying phytoconstituent-derived nanomedicines in their immunoregulatory and therapeutic roles in inflammatory diseases.
    Chen F; Liu Q
    Adv Drug Deliv Rev; 2022 Jul; 186():114317. PubMed ID: 35533788
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanomedicines for back of the eye drug delivery, gene delivery, and imaging.
    Kompella UB; Amrite AC; Pacha Ravi R; Durazo SA
    Prog Retin Eye Res; 2013 Sep; 36():172-98. PubMed ID: 23603534
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Immunoregulation by Artemisinin and Its Derivatives: A New Role for Old Antimalarial Drugs.
    Qiu F; Liu J; Mo X; Liu H; Chen Y; Dai Z
    Front Immunol; 2021; 12():751772. PubMed ID: 34567013
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.