BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 34314798)

  • 1. Biodegradable polyhydroxyalkanoates production from wheat straw by recombinant Halomonas elongata A1.
    Liu C; Wang X; Yang H; Liu C; Zhang Z; Chen G
    Int J Biol Macromol; 2021 Sep; 187():675-682. PubMed ID: 34314798
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Utilization of agricultural residues for poly(3-hydroxybutyrate) production by Halomonas boliviensis LC1.
    Van-Thuoc D; Quillaguamán J; Mamo G; Mattiasson B
    J Appl Microbiol; 2008 Feb; 104(2):420-8. PubMed ID: 17887984
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering NADH/NAD
    Ling C; Qiao GQ; Shuai BW; Olavarria K; Yin J; Xiang RJ; Song KN; Shen YH; Guo Y; Chen GQ
    Metab Eng; 2018 Sep; 49():275-286. PubMed ID: 30219528
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering Halomonas species TD01 for enhanced polyhydroxyalkanoates synthesis via CRISPRi.
    Tao W; Lv L; Chen GQ
    Microb Cell Fact; 2017 Apr; 16(1):48. PubMed ID: 28381263
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polyhydroxybutyrate production by an extremely halotolerant Halomonas elongata strain isolated from the hypersaline meromictic Fără Fund Lake (Transylvanian Basin, Romania).
    Cristea A; Baricz A; Leopold N; Floare CG; Borodi G; Kacso I; Tripon S; Bulzu PA; Andrei AȘ; Cadar O; Levei EA; Banciu HL
    J Appl Microbiol; 2018 Nov; 125(5):1343-1357. PubMed ID: 29928771
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fructose based hyper production of poly-3-hydroxybutyrate from Halomonas sp. YLGW01 and impact of carbon sources on bacteria morphologies.
    Park YL; Bhatia SK; Gurav R; Choi TR; Kim HJ; Song HS; Park JY; Han YH; Lee SM; Park SL; Lee HS; Kim YG; Yang YH
    Int J Biol Macromol; 2020 Jul; 154():929-936. PubMed ID: 32198033
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis and production of polyhydroxyalkanoates by halophiles: current potential and future prospects.
    Quillaguamán J; Guzmán H; Van-Thuoc D; Hatti-Kaul R
    Appl Microbiol Biotechnol; 2010 Feb; 85(6):1687-96. PubMed ID: 20024541
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Burkholderia xenovorans LB400 possesses a functional polyhydroxyalkanoate anabolic pathway encoded by the pha genes and synthesizes poly(3-hydroxybutyrate) under nitrogen-limiting conditions.
    Urtuvia V; Villegas P; Fuentes S; González M; Seeger M
    Int Microbiol; 2018 Jun; 21(1-2):47-57. PubMed ID: 30810921
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biosynthesis of diverse α,ω-diol-derived polyhydroxyalkanoates by engineered Halomonas bluephagenesis.
    Yan X; Liu X; Yu LP; Wu F; Jiang XR; Chen GQ
    Metab Eng; 2022 Jul; 72():275-288. PubMed ID: 35429676
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering of Halomonas bluephagenesis for low cost production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) from glucose.
    Ye J; Hu D; Che X; Jiang X; Li T; Chen J; Zhang HM; Chen GQ
    Metab Eng; 2018 May; 47():143-152. PubMed ID: 29551476
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PHB production from food waste hydrolysates by Halomonas bluephagenesis Harboring PHB operon linked with an essential gene.
    Ji M; Zheng T; Wang Z; Lai W; Zhang L; Zhang Q; Yang H; Meng S; Xu W; Zhao C; Wu Q; Chen GQ
    Metab Eng; 2023 May; 77():12-20. PubMed ID: 36889504
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular characterization of Pseudomonas sp. LDC-5 involved in accumulation of poly 3-hydroxybutyrate and medium-chain-length poly 3-hydroxyalkanoates.
    Sujatha K; Mahalakshmi A; Shenbagarathai R
    Arch Microbiol; 2007 Nov; 188(5):451-62. PubMed ID: 17653530
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering low-salt growth Halomonas Bluephagenesis for cost-effective bioproduction combined with adaptive evolution.
    Zhang L; Lin Y; Yi X; Huang W; Hu Q; Zhang Z; Wu F; Ye JW; Chen GQ
    Metab Eng; 2023 Sep; 79():146-158. PubMed ID: 37543135
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rational flux-tuning of Halomonas bluephagenesis for co-production of bioplastic PHB and ectoine.
    Ma H; Zhao Y; Huang W; Zhang L; Wu F; Ye J; Chen GQ
    Nat Commun; 2020 Jul; 11(1):3313. PubMed ID: 32620759
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microbial production of biopolymers from the renewable resource wheat straw.
    Gasser E; Ballmann P; Dröge S; Bohn J; König H
    J Appl Microbiol; 2014 Oct; 117(4):1035-44. PubMed ID: 24947657
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sea-Ice Bacteria
    Eronen-Rasimus E; Hultman J; Hai T; Pessi IS; Collins E; Wright S; Laine P; Viitamäki S; Lyra C; Thomas DN; Golyshin PN; Luhtanen AM; Kuosa H; Kaartokallio H
    Appl Environ Microbiol; 2021 Aug; 87(17):e0092921. PubMed ID: 34160268
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Halomonas smyrnensis as a cell factory for co-production of PHB and levan.
    Tohme S; Hacıosmanoğlu GG; Eroğlu MS; Kasavi C; Genç S; Can ZS; Toksoy Oner E
    Int J Biol Macromol; 2018 Oct; 118(Pt A):1238-1246. PubMed ID: 30001608
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Production of polyhydroxyalkanoates on waste frying oil employing selected Halomonas strains.
    Pernicova I; Kucera D; Nebesarova J; Kalina M; Novackova I; Koller M; Obruca S
    Bioresour Technol; 2019 Nov; 292():122028. PubMed ID: 31466820
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering an oleic acid-induced system for Halomonas, E. coli and Pseudomonas.
    Ma Y; Zheng X; Lin Y; Zhang L; Yuan Y; Wang H; Winterburn J; Wu F; Wu Q; Ye JW; Chen GQ
    Metab Eng; 2022 Jul; 72():325-336. PubMed ID: 35513297
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploitation of inexpensive substrates for production of a novel SCL-LCL-PHA co-polymer by Pseudomonas aeruginosa MTCC 7925.
    Singh AK; Mallick N
    J Ind Microbiol Biotechnol; 2009 Mar; 36(3):347-54. PubMed ID: 19052786
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.