BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 34314857)

  • 1. Nanoscale synapse organization and dysfunction in neurodevelopmental disorders.
    Zieger HL; Choquet D
    Neurobiol Dis; 2021 Oct; 158():105453. PubMed ID: 34314857
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distinct SAP102 and PSD-95 nano-organization defines multiple types of synaptic scaffold protein domains at single synapses.
    Metzbower SR; Levy AD; Dharmasri PA; Anderson MC; Blanpied TA
    J Neurosci; 2024 May; ():. PubMed ID: 38777601
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glutamatergic synapses in neurodevelopmental disorders.
    Moretto E; Murru L; Martano G; Sassone J; Passafaro M
    Prog Neuropsychopharmacol Biol Psychiatry; 2018 Jun; 84(Pt B):328-342. PubMed ID: 28935587
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasticity of dendritic spines: Molecular function and dysfunction in neurodevelopmental disorders.
    Nishiyama J
    Psychiatry Clin Neurosci; 2019 Sep; 73(9):541-550. PubMed ID: 31215705
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Linking Nanoscale Dynamics of AMPA Receptor Organization to Plasticity of Excitatory Synapses and Learning.
    Choquet D
    J Neurosci; 2018 Oct; 38(44):9318-9329. PubMed ID: 30381423
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neurodevelopmental synaptopathies: Insights from behaviour in rodent models of synapse gene mutations.
    Luo J; Norris RH; Gordon SL; Nithianantharajah J
    Prog Neuropsychopharmacol Biol Psychiatry; 2018 Jun; 84(Pt B):424-439. PubMed ID: 29217145
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distinct SAP102 and PSD-95 nano-organization defines multiple types of synaptic scaffold protein domains at single synapses.
    Metzbower SR; Dharmasri PA; Levy AD; Anderson MC; Blanpied TA
    bioRxiv; 2023 Sep; ():. PubMed ID: 37745494
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shank synaptic scaffold proteins: keys to understanding the pathogenesis of autism and other synaptic disorders.
    Sala C; Vicidomini C; Bigi I; Mossa A; Verpelli C
    J Neurochem; 2015 Dec; 135(5):849-58. PubMed ID: 26338675
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activity-Dependent Remodeling of Synaptic Protein Organization Revealed by High Throughput Analysis of STED Nanoscopy Images.
    Wiesner T; Bilodeau A; Bernatchez R; DeschĂȘnes A; Raulier B; De Koninck P; Lavoie-Cardinal F
    Front Neural Circuits; 2020; 14():57. PubMed ID: 33177994
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Complementary Use of Super-Resolution Imaging Modalities to Study the Nanoscale Architecture of Inhibitory Synapses.
    Gookin SE; Taylor MR; Schwartz SL; Kennedy MJ; Dell'Acqua ML; Crosby KC; Smith KR
    Front Synaptic Neurosci; 2022; 14():852227. PubMed ID: 35463850
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanoscale Subsynaptic Domains Underlie the Organization of the Inhibitory Synapse.
    Crosby KC; Gookin SE; Garcia JD; Hahm KM; Dell'Acqua ML; Smith KR
    Cell Rep; 2019 Mar; 26(12):3284-3297.e3. PubMed ID: 30893601
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanoscale organization of the pre-synapse: Tracking the neurotransmitter release machinery.
    Gormal RS; Meunier FA
    Curr Opin Neurobiol; 2022 Aug; 75():102576. PubMed ID: 35716557
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synaptic Formation, Neural Circuits and Neurodevelopmental Disorders Controlled by Signaling, Translation, and Epigenetic Regulation.
    Hsueh YP
    Dev Neurobiol; 2019 Jan; 79(1):2-7. PubMed ID: 30672130
    [No Abstract]   [Full Text] [Related]  

  • 14. Errant gardeners: glial-cell-dependent synaptic pruning and neurodevelopmental disorders.
    Neniskyte U; Gross CT
    Nat Rev Neurosci; 2017 Nov; 18(11):658-670. PubMed ID: 28931944
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synapse formation: from cellular and molecular mechanisms to neurodevelopmental and neurodegenerative disorders.
    Batool S; Raza H; Zaidi J; Riaz S; Hasan S; Syed NI
    J Neurophysiol; 2019 Apr; 121(4):1381-1397. PubMed ID: 30759043
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contribution of Membrane Lipids to Postsynaptic Protein Organization.
    Westra M; Gutierrez Y; MacGillavry HD
    Front Synaptic Neurosci; 2021; 13():790773. PubMed ID: 34887741
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dendritic Integration Dysfunction in Neurodevelopmental Disorders.
    Nelson AD; Bender KJ
    Dev Neurosci; 2021; 43(3-4):201-221. PubMed ID: 34139699
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Imaging of spine synapses using super-resolution microscopy.
    Kashiwagi Y; Okabe S
    Anat Sci Int; 2021 Jun; 96(3):343-358. PubMed ID: 33459976
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synaptic dysfunction in neurodegenerative and neurodevelopmental diseases: an overview of induced pluripotent stem-cell-based disease models.
    Taoufik E; Kouroupi G; Zygogianni O; Matsas R
    Open Biol; 2018 Sep; 8(9):. PubMed ID: 30185603
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Correlative Assembly of Subsynaptic Nanoscale Organizations During Development.
    Sun SY; Li XW; Cao R; Zhao Y; Sheng N; Tang AH
    Front Synaptic Neurosci; 2022; 14():748184. PubMed ID: 35685244
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.