These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 34314857)

  • 1. Nanoscale synapse organization and dysfunction in neurodevelopmental disorders.
    Zieger HL; Choquet D
    Neurobiol Dis; 2021 Oct; 158():105453. PubMed ID: 34314857
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glutamatergic synapses in neurodevelopmental disorders.
    Moretto E; Murru L; Martano G; Sassone J; Passafaro M
    Prog Neuropsychopharmacol Biol Psychiatry; 2018 Jun; 84(Pt B):328-342. PubMed ID: 28935587
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasticity of dendritic spines: Molecular function and dysfunction in neurodevelopmental disorders.
    Nishiyama J
    Psychiatry Clin Neurosci; 2019 Sep; 73(9):541-550. PubMed ID: 31215705
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Linking Nanoscale Dynamics of AMPA Receptor Organization to Plasticity of Excitatory Synapses and Learning.
    Choquet D
    J Neurosci; 2018 Oct; 38(44):9318-9329. PubMed ID: 30381423
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neurodevelopmental synaptopathies: Insights from behaviour in rodent models of synapse gene mutations.
    Luo J; Norris RH; Gordon SL; Nithianantharajah J
    Prog Neuropsychopharmacol Biol Psychiatry; 2018 Jun; 84(Pt B):424-439. PubMed ID: 29217145
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distinct SAP102 and PSD-95 nano-organization defines multiple types of synaptic scaffold protein domains at single synapses.
    Metzbower SR; Dharmasri PA; Levy AD; Anderson MC; Blanpied TA
    bioRxiv; 2023 Sep; ():. PubMed ID: 37745494
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shank synaptic scaffold proteins: keys to understanding the pathogenesis of autism and other synaptic disorders.
    Sala C; Vicidomini C; Bigi I; Mossa A; Verpelli C
    J Neurochem; 2015 Dec; 135(5):849-58. PubMed ID: 26338675
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activity-Dependent Remodeling of Synaptic Protein Organization Revealed by High Throughput Analysis of STED Nanoscopy Images.
    Wiesner T; Bilodeau A; Bernatchez R; DeschĂȘnes A; Raulier B; De Koninck P; Lavoie-Cardinal F
    Front Neural Circuits; 2020; 14():57. PubMed ID: 33177994
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Complementary Use of Super-Resolution Imaging Modalities to Study the Nanoscale Architecture of Inhibitory Synapses.
    Gookin SE; Taylor MR; Schwartz SL; Kennedy MJ; Dell'Acqua ML; Crosby KC; Smith KR
    Front Synaptic Neurosci; 2022; 14():852227. PubMed ID: 35463850
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoscale Subsynaptic Domains Underlie the Organization of the Inhibitory Synapse.
    Crosby KC; Gookin SE; Garcia JD; Hahm KM; Dell'Acqua ML; Smith KR
    Cell Rep; 2019 Mar; 26(12):3284-3297.e3. PubMed ID: 30893601
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanoscale organization of the pre-synapse: Tracking the neurotransmitter release machinery.
    Gormal RS; Meunier FA
    Curr Opin Neurobiol; 2022 Aug; 75():102576. PubMed ID: 35716557
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synaptic Formation, Neural Circuits and Neurodevelopmental Disorders Controlled by Signaling, Translation, and Epigenetic Regulation.
    Hsueh YP
    Dev Neurobiol; 2019 Jan; 79(1):2-7. PubMed ID: 30672130
    [No Abstract]   [Full Text] [Related]  

  • 13. Errant gardeners: glial-cell-dependent synaptic pruning and neurodevelopmental disorders.
    Neniskyte U; Gross CT
    Nat Rev Neurosci; 2017 Nov; 18(11):658-670. PubMed ID: 28931944
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synapse formation: from cellular and molecular mechanisms to neurodevelopmental and neurodegenerative disorders.
    Batool S; Raza H; Zaidi J; Riaz S; Hasan S; Syed NI
    J Neurophysiol; 2019 Apr; 121(4):1381-1397. PubMed ID: 30759043
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contribution of Membrane Lipids to Postsynaptic Protein Organization.
    Westra M; Gutierrez Y; MacGillavry HD
    Front Synaptic Neurosci; 2021; 13():790773. PubMed ID: 34887741
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Imaging of spine synapses using super-resolution microscopy.
    Kashiwagi Y; Okabe S
    Anat Sci Int; 2021 Jun; 96(3):343-358. PubMed ID: 33459976
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synaptic dysfunction in neurodegenerative and neurodevelopmental diseases: an overview of induced pluripotent stem-cell-based disease models.
    Taoufik E; Kouroupi G; Zygogianni O; Matsas R
    Open Biol; 2018 Sep; 8(9):. PubMed ID: 30185603
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Correlative Assembly of Subsynaptic Nanoscale Organizations During Development.
    Sun SY; Li XW; Cao R; Zhao Y; Sheng N; Tang AH
    Front Synaptic Neurosci; 2022; 14():748184. PubMed ID: 35685244
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MEF2C regulates cortical inhibitory and excitatory synapses and behaviors relevant to neurodevelopmental disorders.
    Harrington AJ; Raissi A; Rajkovich K; Berto S; Kumar J; Molinaro G; Raduazzo J; Guo Y; Loerwald K; Konopka G; Huber KM; Cowan CW
    Elife; 2016 Oct; 5():. PubMed ID: 27779093
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ADAM10 as a therapeutic target for brain diseases: from developmental disorders to Alzheimer's disease.
    Marcello E; Borroni B; Pelucchi S; Gardoni F; Di Luca M
    Expert Opin Ther Targets; 2017 Nov; 21(11):1017-1026. PubMed ID: 28960088
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.