These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Synthesis of indole-substituted thiosemicarbazones as an aldose reductase inhibitor: an Shehzad MT; Khan A; Halim SA; Hameed A; Imran A; Iqbal J; Ullah A; Asari A; Khan S; Shafiq Z; Al-Harrasi A Future Med Chem; 2021 Jul; 13(14):1185-1201. PubMed ID: 34148377 [No Abstract] [Full Text] [Related]
4. Benzoxazinone-thiosemicarbazones as antidiabetic leads via aldose reductase inhibition: Synthesis, biological screening and molecular docking study. Shehzad MT; Imran A; Njateng GSS; Hameed A; Islam M; Al-Rashida M; Uroos M; Asari A; Shafiq Z; Iqbal J Bioorg Chem; 2019 Jun; 87():857-866. PubMed ID: 30551808 [TBL] [Abstract][Full Text] [Related]
5. Exploring antidiabetic potential of adamantyl-thiosemicarbazones via aldose reductase (ALR2) inhibition. Shehzad MT; Hameed A; Al-Rashida M; Imran A; Uroos M; Asari A; Mohamad H; Islam M; Iftikhar S; Shafiq Z; Iqbal J Bioorg Chem; 2019 Nov; 92():103244. PubMed ID: 31541804 [TBL] [Abstract][Full Text] [Related]
6. Development and exploration of novel substituted thiosemicarbazones as inhibitors of aldose reductase via in vitro analysis and computational study. Imran A; Shehzad MT; Shah SJA; Al Adhami T; Laws M; Rahman KM; Alharthy RD; Khan IA; Shafiq Z; Iqbal J Sci Rep; 2022 Apr; 12(1):5734. PubMed ID: 35388067 [TBL] [Abstract][Full Text] [Related]
7. Design, synthesis and biological evaluation of selective hybrid coumarin-thiazolidinedione aldose reductase-II inhibitors as potential antidiabetics. Kumar Pasala V; Gudipudi G; Sankeshi V; Basude M; Gundla R; Singh Jadav S; Srinivas B; Yadaiah Goud E; Nareshkumar D Bioorg Chem; 2021 Sep; 114():104970. PubMed ID: 34120026 [TBL] [Abstract][Full Text] [Related]
8. Non-carboxylic acid inhibitors of aldose reductase based on N-substituted thiazolidinedione derivatives. Mohd Siddique MU; Thakur A; Shilkar D; Yasmin S; Halakova D; Kovacikova L; Prnova MS; Stefek M; Acevedo O; Dasararaju G; Devadasan V; Mondal SK; Jayaprakash V Eur J Med Chem; 2021 Nov; 223():113630. PubMed ID: 34175538 [TBL] [Abstract][Full Text] [Related]
10. Effect of C7 modifications on benzothiadiazine-1,1-dioxide derivatives on their inhibitory activity and selectivity toward aldose reductase. Zhang S; Chen X; Parveen S; Hussain S; Yang Y; Jing C; Zhu C ChemMedChem; 2013 Apr; 8(4):603-13. PubMed ID: 23136050 [TBL] [Abstract][Full Text] [Related]
11. Search for non-acidic ALR2 inhibitors: Evaluation of flavones as targeted agents for the management of diabetic complications. Vyas B; Choudhary S; Singh PK; Kumar M; Verma H; Singh M; Malik AK; Silakari O Bioorg Chem; 2020 Mar; 96():103570. PubMed ID: 31978681 [TBL] [Abstract][Full Text] [Related]
12. Biological effects of bis-hydrazone compounds bearing isovanillin moiety on the aldose reductase. Yapar G; Esra Duran H; Lolak N; Akocak S; Türkeş C; Durgun M; Işık M; Beydemir Ş Bioorg Chem; 2021 Dec; 117():105473. PubMed ID: 34768205 [TBL] [Abstract][Full Text] [Related]
13. Discovery of new inhibitors of aldose reductase from molecular docking and database screening. Rastelli G; Ferrari AM; Costantino L; Gamberini MC Bioorg Med Chem; 2002 May; 10(5):1437-50. PubMed ID: 11886806 [TBL] [Abstract][Full Text] [Related]
14. Rhodanine-3-acetamide derivatives as aldose and aldehyde reductase inhibitors to treat diabetic complications: synthesis, biological evaluation, molecular docking and simulation studies. Bacha MM; Nadeem H; Zaib S; Sarwar S; Imran A; Rahman SU; Ali HS; Arif M; Iqbal J BMC Chem; 2021 Apr; 15(1):28. PubMed ID: 33906691 [TBL] [Abstract][Full Text] [Related]
15. (4-Oxo-2-thioxothiazolidin-3-yl)acetic acids as potent and selective aldose reductase inhibitors. Kucerova-Chlupacova M; Halakova D; Majekova M; Treml J; Stefek M; Soltesova Prnova M Chem Biol Interact; 2020 Dec; 332():109286. PubMed ID: 33038328 [TBL] [Abstract][Full Text] [Related]
16. Correlation of binding constants and molecular modelling of inhibitors in the active sites of aldose reductase and aldehyde reductase. Carbone V; Zhao HT; Chung R; Endo S; Hara A; El-Kabbani O Bioorg Med Chem; 2009 Feb; 17(3):1244-50. PubMed ID: 19121944 [TBL] [Abstract][Full Text] [Related]
17. (5-Hydroxy-4-oxo-2-styryl-4 Chen H; Zhang X; Zhang X; Liu W; Lei Y; Zhu C; Ma B Molecules; 2020 Nov; 25(21):. PubMed ID: 33158254 [TBL] [Abstract][Full Text] [Related]
18. Addressing selectivity issues of aldose reductase 2 inhibitors for the management of diabetic complications. Kumar M; Choudhary S; Singh PK; Silakari O Future Med Chem; 2020 Jul; 12(14):1327-1358. PubMed ID: 32602375 [TBL] [Abstract][Full Text] [Related]
19. Synthesis and structure-activity relationship studies of quinoxaline derivatives as aldose reductase inhibitors. Wu B; Yang Y; Qin X; Zhang S; Jing C; Zhu C; Ma B ChemMedChem; 2013 Dec; 8(12):1913-7. PubMed ID: 24115741 [TBL] [Abstract][Full Text] [Related]
20. Exploration of thioxothiazolidinone-sulfonate conjugates as a new class of aldehyde/aldose reductase inhibitors: A synthetic and computational investigation. Andleeb H; Tehseen Y; Jabeen F; Khan I; Iqbal J; Hameed S Bioorg Chem; 2017 Dec; 75():1-15. PubMed ID: 28888096 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]