BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 34314950)

  • 21. A sustainable route for the recovery of metals from waste printed circuit boards using methanesulfonic acid.
    Jadhao PR; Mishra S; Singh A; Pant KK; Nigam KDP
    J Environ Manage; 2023 Jun; 335():117581. PubMed ID: 36867901
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A potential industrial waste-waste co-treatment process of utilizing waste SO
    Wan X; Taskinen P; Shi J; Jokilaakso A
    J Hazard Mater; 2021 Jul; 414():125541. PubMed ID: 33677318
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Co-recovery of Mn and Fe from pyrolusite and copper slag with hydrometallurgy process: Kinetics and leaching mechanisms.
    Wang L; Chen Y; Xu Y; Ma Y; Du Y
    Environ Sci Pollut Res Int; 2023 Dec; 30(60):125877-125888. PubMed ID: 38008844
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Recovery of yttrium and europium from spent fluorescent lamps using pure levulinic acid and the deep eutectic solvent levulinic acid-choline chloride.
    Pateli IM; Abbott AP; Binnemans K; Rodriguez Rodriguez N
    RSC Adv; 2020 Aug; 10(48):28879-28890. PubMed ID: 35520061
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bacterial leaching of critical metal values from Polish copper metallurgical slags using Acidithiobacillus thiooxidans.
    Mikoda B; Potysz A; Kmiecik E
    J Environ Manage; 2019 Apr; 236():436-445. PubMed ID: 30769253
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Leaching of cadmium, chromium, copper, lead, and zinc from two slag dumps with different environmental exposure periods under dynamic acidic condition.
    Jin Z; Liu T; Yang Y; Jackson D
    Ecotoxicol Environ Saf; 2014 Jun; 104():43-50. PubMed ID: 24632122
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An efficient approach to utilize copper smelting slag: Separating nonferrous metals and reducing iron oxide at high temperature.
    Wu L; Li H; Liu K; Mei H; Xia Y; Dong Y
    Waste Manag; 2023 Dec; 172():182-191. PubMed ID: 37922838
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Selective recovery of copper, zinc and nickel from printed circuit boards by ammonia leaching under pressure].
    Wang M; Cao HB; Zhang Y
    Huan Jing Ke Xue; 2011 Feb; 32(2):596-602. PubMed ID: 21528589
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cleaning of a copper matte smelting slag from a water-jacket furnace by direct reduction of heavy metals.
    Maweja K; Mukongo T; Mutombo I
    J Hazard Mater; 2009 May; 164(2-3):856-62. PubMed ID: 18848396
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of ultrasound and temperature on copper electro reduction in Deep Eutectic Solvents (DES).
    Mandroyan A; Mourad-Mahmoud M; Doche ML; Hihn JY
    Ultrason Sonochem; 2014 Nov; 21(6):2010-9. PubMed ID: 24629581
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Bioregeneration of the solutions obtained during the leaching of nonferrous metals from waste slag by acidophilic microorganisms].
    Fomchenko NV; Murav'ev MI; Kondrat'eva TF
    Prikl Biokhim Mikrobiol; 2014; 50(2):193-6. PubMed ID: 25272738
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Electrochemical fabrication of nanoporous copper films in choline chloride-urea deep eutectic solvent.
    Zhang QB; Abbott AP; Yang C
    Phys Chem Chem Phys; 2015 Jun; 17(22):14702-9. PubMed ID: 25972227
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Deep eutectic solvent-based extraction of polyphenolic antioxidants from onion (Allium cepa L.) peel.
    Pal CBT; Jadeja GC
    J Sci Food Agric; 2019 Mar; 99(4):1969-1979. PubMed ID: 30270562
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Environmentally friendly and non-polluting solvent pretreatment of palm samples for polyphenol analysis using choline chloride deep eutectic solvents.
    Fu N; Lv R; Guo Z; Guo Y; You X; Tang B; Han D; Yan H; Row KH
    J Chromatogr A; 2017 Apr; 1492():1-11. PubMed ID: 28283247
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cleaning of waste smelter slags and recovery of valuable metals by pressure oxidative leaching.
    Li Y; Perederiy I; Papangelakis VG
    J Hazard Mater; 2008 Apr; 152(2):607-15. PubMed ID: 17728060
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Co-treatment of waste smelting slags and gypsum wastes via reductive-sulfurizing smelting for valuable metals recovery.
    Li Y; Chen Y; Tang C; Yang S; He J; Tang M
    J Hazard Mater; 2017 Jan; 322(Pt B):402-412. PubMed ID: 27773439
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mineralogical Characterization of Historic Copper Slag to Guide the Recovery of Valuable Metals: A Namibian Case Study.
    Dzinomwa G; Mapani B; Nghipulile T; Maweja K; Kurasha JT; Amwaama M; Chigayo K
    Materials (Basel); 2023 Sep; 16(18):. PubMed ID: 37763403
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bulk flotation followed by selective leaching with biogenic ferric iron is a promising solution for eco-friendly processing of complex sulfidic ores.
    Muravyov M; Panyushkina A; Fomchenko N
    J Environ Manage; 2022 Sep; 318():115587. PubMed ID: 35759958
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Recovery of copper, zinc and lead from photovoltaic panel residue.
    Xanthopoulos P; Bevandić S; Spooren J; Binnemans K; Kukurugya F
    RSC Adv; 2022 Jan; 12(4):2351-2360. PubMed ID: 35425251
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Recovery of zinc and copper from copper smelter flue dust. Optimisation of sulphuric acid leaching.
    Gonzalez-Montero P; Iglesias-Gonzalez N; Romero R; Mazuelos A; Carranza F
    Environ Technol; 2020 Apr; 41(9):1093-1100. PubMed ID: 30192727
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.