BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

29 related articles for article (PubMed ID: 34315037)

  • 1. Integrative risk assessment method via combining geostatistical analysis, random forest, and receptor models for potentially toxic elements in selenium-rich soil.
    Wu H; Cheng N; Chen P; Zhou F; Fan Y; Qi M; Shi J; Zhang Z; Ren R; Wang C; Liang D
    Environ Pollut; 2023 Nov; 337():122555. PubMed ID: 37714402
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatial distribution and source identification of potentially toxic elements in Yellow River Delta soils, China: An interpretable machine-learning approach.
    Zhou M; Li Y
    Sci Total Environ; 2024 Feb; 912():169092. PubMed ID: 38056655
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distribution of potentially toxic elements in soils and sediments in Pearl River Delta, China: Natural versus anthropogenic source discrimination.
    Wang J; Yuan J; Hou Q; Yang Z; You Y; Yu T; Ji J; Dou L; Ha X; Sheng W; Liu X
    Sci Total Environ; 2023 Dec; 903():166573. PubMed ID: 37633402
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A remote sensing-based strategy for mapping potentially toxic elements of soils: Temporal-spatial-spectral covariates combined with random forest.
    Xu X; Wang Z; Song X; Zhan W; Yang S
    Environ Res; 2024 Jan; 240(Pt 1):117570. PubMed ID: 37939802
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Centennial-scale source shift in potentially toxic metal(loid)s in Yangtze River.
    Hong H; Qian L; Wu S; Ruan L; Li H; Su M; Zhang B; Liu J; Yan C; Lu H
    J Hazard Mater; 2024 Jan; 461():132526. PubMed ID: 37741208
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microbial and potentially toxic elements risk assessment in high Andean river water based on Monte Carlo simulation, Peru.
    Custodio M; Peñaloza R; Ochoa S; De la Cruz H; Rodríguez C; Cuadrado W
    Sci Rep; 2023 Dec; 13(1):21473. PubMed ID: 38053001
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatial Diffusion of Potentially Toxic Elements in Soils around Non-ferrous Metal Mines.
    Li L; Zhang Y; Zhang L; Wu B; Gan X
    Environ Res; 2024 May; ():119285. PubMed ID: 38823614
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vertical distributions and potential contamination assessment of seldom monitored trace elements in three different land use types of Yellow River Delta.
    Song Y; Yang Z
    Mar Pollut Bull; 2024 Feb; 199():116033. PubMed ID: 38219293
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Patterns of Migration of Potentially Toxic Elements from Coal Mining Subsidence Areas and Associated Soils to Waterlogged Areas.
    Tan M; Dong J; Qu J; Hao M
    Toxics; 2023 Oct; 11(11):. PubMed ID: 37999540
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A multisensor approach coupled with multivariate statistics and geostatistics for assessing the status of land degradation: The case of soils contaminated in a former outdoor shooting range.
    Vingiani S; Buttafuoco G; Fagnano M; Guarino A; Perreca C; Albanese S
    Sci Total Environ; 2024 Jul; 933():172398. PubMed ID: 38677437
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving assessment quality of soil natural attenuation capacity at the point and regional scales.
    Guang X; Qu M; Liu M; Chen J; Zhao Y; Huang B
    Environ Monit Assess; 2023 Oct; 195(11):1339. PubMed ID: 37855984
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combination of enrichment factor and positive matrix factorization in the estimation of potentially toxic element source distribution in agricultural soil.
    Agyeman PC; John K; Kebonye NM; Borůvka L; Vašát R
    Environ Geochem Health; 2023 May; 45(5):2359-2385. PubMed ID: 35972608
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Source apportionment and spatial distribution of potentially toxic elements in soils: A new exploration on receptor and geostatistical models.
    Wang Z; Chen X; Yu D; Zhang L; Wang J; Lv J
    Sci Total Environ; 2021 Mar; 759():143428. PubMed ID: 33168250
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Current Status and Temporal Trend of Potentially Toxic Elements Pollution in Agricultural Soil in the Yangtze River Delta Region: A Meta-Analysis.
    She S; Hu B; Zhang X; Shao S; Jiang Y; Zhou L; Shi Z
    Int J Environ Res Public Health; 2021 Jan; 18(3):. PubMed ID: 33503895
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potentially toxic elements in the environment - a review of sources, sinks, pathways and mitigation measures.
    Nieder R; Benbi DK
    Rev Environ Health; 2023 May; ():. PubMed ID: 37118984
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Source apportionment of potentially toxic elements in soils of the Yellow River Delta Nature Reserve, China: The application of three receptor models and geostatistical independent simulation.
    Zhang M; Lv J
    Environ Pollut; 2021 Nov; 289():117834. PubMed ID: 34315037
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identifying quantitative sources and spatial distributions of potentially toxic elements in soils by using three receptor models and sequential indicator simulation.
    Wang Y; Zhang L; Wang J; Lv J
    Chemosphere; 2020 Mar; 242():125266. PubMed ID: 31896197
    [TBL] [Abstract][Full Text] [Related]  

  • 18.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.