These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
177 related articles for article (PubMed ID: 34315262)
1. Environment and phenology shape local adaptation in thermal performance. Villeneuve AR; Komoroske LM; Cheng BS Proc Biol Sci; 2021 Jul; 288(1955):20210741. PubMed ID: 34315262 [TBL] [Abstract][Full Text] [Related]
2. Thermodynamic effects drive countergradient responses in the thermal performance of Littorina saxatilis across latitude. Dwane C; Rezende EL; Tills O; Galindo J; Rolán-Alvarez E; Rundle S; Truebano M Sci Total Environ; 2023 Mar; 863():160877. PubMed ID: 36521622 [TBL] [Abstract][Full Text] [Related]
3. Adaptation to climate change: contrasting patterns of thermal-reaction-norm evolution in Pacific versus Atlantic silversides. Baumann H; Conover DO Proc Biol Sci; 2011 Aug; 278(1716):2265-73. PubMed ID: 21208956 [TBL] [Abstract][Full Text] [Related]
4. Both life-history plasticity and local adaptation will shape range-wide responses to climate warming in the tundra plant Silene acaulis. Peterson ML; Doak DF; Morris WF Glob Chang Biol; 2018 Apr; 24(4):1614-1625. PubMed ID: 29155464 [TBL] [Abstract][Full Text] [Related]
5. Thermal adaptation and phenotypic plasticity in a warming world: Insights from common garden experiments on Alaskan sockeye salmon. Sparks MM; Westley PAH; Falke JA; Quinn TP Glob Chang Biol; 2017 Dec; 23(12):5203-5217. PubMed ID: 28586156 [TBL] [Abstract][Full Text] [Related]
6. Incorporating population-level variation in thermal performance into predictions of geographic range shifts. Angert AL; Sheth SN; Paul JR Integr Comp Biol; 2011 Nov; 51(5):733-50. PubMed ID: 21705795 [TBL] [Abstract][Full Text] [Related]
7. Range margin populations show high climate adaptation lags in European trees. Fréjaville T; Vizcaíno-Palomar N; Fady B; Kremer A; Benito Garzón M Glob Chang Biol; 2020 Feb; 26(2):484-495. PubMed ID: 31642570 [TBL] [Abstract][Full Text] [Related]
8. Effects of climate and demography on reproductive phenology of a harvested marine fish population. Rogers LA; Dougherty AB Glob Chang Biol; 2019 Feb; 25(2):708-720. PubMed ID: 30430699 [TBL] [Abstract][Full Text] [Related]
9. Do differences in developmental mode shape the potential for local adaptation? Jupe LL; Bilton DT; Knights AM Ecology; 2020 Mar; 101(3):e02942. PubMed ID: 31778204 [TBL] [Abstract][Full Text] [Related]
10. Genotypic variation in phenological plasticity: Reciprocal common gardens reveal adaptive responses to warmer springs but not to fall frost. Cooper HF; Grady KC; Cowan JA; Best RJ; Allan GJ; Whitham TG Glob Chang Biol; 2019 Jan; 25(1):187-200. PubMed ID: 30346108 [TBL] [Abstract][Full Text] [Related]
11. Exploring physiological plasticity and local thermal adaptation in an intertidal crab along a latitudinal cline. Gaitán-Espitia JD; Bacigalupe LD; Opitz T; Lagos NA; Osores S; Lardies MA J Therm Biol; 2017 Aug; 68(Pt A):14-20. PubMed ID: 28689716 [TBL] [Abstract][Full Text] [Related]
12. Divergence of gastropod life history in contrasting thermal environments in a geothermal lake. Johansson MP; Ermold F; Kristjánsson BK; Laurila A J Evol Biol; 2016 Oct; 29(10):2043-2053. PubMed ID: 27364364 [TBL] [Abstract][Full Text] [Related]
13. Countergradient variation in locomotor performance of two sympatric Polynesian skinks (Emoia impar, Emoia cyanura). McElroy MT Physiol Biochem Zool; 2014; 87(2):222-30. PubMed ID: 24642540 [TBL] [Abstract][Full Text] [Related]
14. Drivers of Intraspecific Variation in Thermal Traits and Their Importance for Resilience to Global Change in Amphibians. Cocciardi JM; Ohmer MEB Integr Comp Biol; 2024 Sep; 64(3):882-899. PubMed ID: 39138058 [TBL] [Abstract][Full Text] [Related]
15. Potential for adaptation to climate change: family-level variation in fitness-related traits and their responses to heat waves in a snail population. Leicht K; Seppälä K; Seppälä O BMC Evol Biol; 2017 Jun; 17(1):140. PubMed ID: 28619023 [TBL] [Abstract][Full Text] [Related]
16. Variation in spawning time promotes genetic variability in population responses to environmental change in a marine fish. Oomen RA; Hutchings JA Conserv Physiol; 2015; 3(1):cov027. PubMed ID: 27293712 [TBL] [Abstract][Full Text] [Related]
17. Variation in developmental temperature alters adulthood plasticity of thermal tolerance in Healy TM; Bock AK; Burton RS J Exp Biol; 2019 Nov; 222(Pt 22):. PubMed ID: 31597734 [TBL] [Abstract][Full Text] [Related]
18. Use of intraspecific variation in thermal responses for estimating an elevational cline in the timing of cold hardening in a sub-boreal conifer. Ishizuka W; Ono K; Hara T; Goto S Plant Biol (Stuttg); 2015 Jan; 17(1):177-85. PubMed ID: 24988996 [TBL] [Abstract][Full Text] [Related]
19. Phenological response to climate variation in a northern red oak plantation: Links to survival and productivity. Knott JA; Liang L; Dukes JS; Swihart RK; Fei S Ecology; 2023 Mar; 104(3):e3940. PubMed ID: 36457179 [TBL] [Abstract][Full Text] [Related]
20. Early life exposure to high temperature enhances locomotor performance without alteration in thermal ecology in different populations of Thoropa taophora tadpoles (Anura, Cycloramphidae). Carvalho JE; Gallo AC; Brasileiro CA; Schaeffer PJ J Exp Biol; 2024 Aug; 227(16):. PubMed ID: 39054944 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]