These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 34315345)
21. 4,5-Dichloro-2-octyl-4-isothiazolin-3-one (DCOIT) modifies synaptic transmission in hippocampal CA3 neurons of rats. Wakita M; Shoudai K; Oyama Y; Akaike N Chemosphere; 2017 Oct; 184():337-346. PubMed ID: 28605704 [TBL] [Abstract][Full Text] [Related]
22. Monitoring and evaluation of the environmental dissipation of the marine antifoulant 4,5-dichloro-2-n-octyl-4-isothiazolin-3-one (DCOIT) in a Danish Harbor. Steen RJ; Ariese F; van Hattum B; Jacobsen J; Jacobson A Chemosphere; 2004 Nov; 57(6):513-21. PubMed ID: 15350413 [TBL] [Abstract][Full Text] [Related]
23. Ecotoxicological Assessment of Immersion Samples from Facade Render Containing Free or Encapsulated Biocides. Vermeirssen ELM; Campiche S; Dietschweiler C; Werner I; Burkhardt M Environ Toxicol Chem; 2018 Aug; 37(8):2246-2256. PubMed ID: 29786148 [TBL] [Abstract][Full Text] [Related]
24. Identification of Molecular Targets for 4,5-Dichloro-2-n-octyl-4-isothiazolin-3-one (DCOIT) in Teleosts: New Insight into Mechanism of Toxicity. Chen L; Au DW; Hu C; Peterson DR; Zhou B; Qian PY Environ Sci Technol; 2017 Feb; 51(3):1840-1847. PubMed ID: 28026967 [TBL] [Abstract][Full Text] [Related]
25. Chronic Exposure of Marine Medaka (Oryzias melastigma) to 4,5-Dichloro-2-n-octyl-4-isothiazolin-3-one (DCOIT) Reveals Its Mechanism of Action in Endocrine Disruption via the Hypothalamus-Pituitary-Gonadal-Liver (HPGL) Axis. Chen L; Zhang W; Ye R; Hu C; Wang Q; Seemann F; Au DW; Zhou B; Giesy JP; Qian PY Environ Sci Technol; 2016 Apr; 50(8):4492-501. PubMed ID: 27035644 [TBL] [Abstract][Full Text] [Related]
26. The toxicity of the three antifouling biocides DCOIT, TPBP and medetomidine to the marine pelagic copepod Acartia tonsa. Wendt I; Backhaus T; Blanck H; Arrhenius Å Ecotoxicology; 2016 Jul; 25(5):871-9. PubMed ID: 26984312 [TBL] [Abstract][Full Text] [Related]
27. A potential mechanism for degradation of 4,5-dichloro-2-(n-octyl)-3[2H]-isothiazolone (DCOIT) by brown-rot fungus Gloeophyllum trabeum. Zhu Y; Xue J; Cao J; Xiao H J Hazard Mater; 2017 Sep; 337():72-79. PubMed ID: 28505510 [TBL] [Abstract][Full Text] [Related]
28. Allergic contact dermatitis caused by the preservative 4,5-dichloro-2-n-octyl-4-isothiazolin-3-one in black trousers. Umekoji A; Fukai K; Sowa-Osako J; Manabe M; Kikugawa M; Ishii K; Sasaki K; Tsuruta D Contact Dermatitis; 2016 Nov; 75(5):326-328. PubMed ID: 27709710 [No Abstract] [Full Text] [Related]
29. SeaNine 211 as antifouling biocide: A coastal pollutant of emerging concern. Chen L; Lam JCW J Environ Sci (China); 2017 Nov; 61():68-79. PubMed ID: 29191317 [TBL] [Abstract][Full Text] [Related]
30. Thyroid Endocrine Disruption and Mechanism of the Marine Antifouling Pollutant 4,5-Dichloro-2-n-octyl-4-isothiazolin-3-one. Liu M; Hu C; Li J; Zhou B; Lam PKS; Chen L Environ Sci Technol; 2024 Oct; 58(43):19189-19198. PubMed ID: 39344067 [TBL] [Abstract][Full Text] [Related]
31. Functional and dynamic mitochondrial damage by chloromethylisothiazolinone/methylisothiazolinone (CMIT/MIT) mixture in brain endothelial cell lines and rat cerebrovascular endothelium. Kim D; Shin Y; Kim EH; Lee Y; Kim S; Kim HS; Kim HC; Leem JH; Kim HR; Bae ON Toxicol Lett; 2022 Aug; 366():45-57. PubMed ID: 35803525 [TBL] [Abstract][Full Text] [Related]
32. Risks of using antifouling biocides in aquaculture. Guardiola FA; Cuesta A; Meseguer J; Esteban MA Int J Mol Sci; 2012; 13(2):1541-1560. PubMed ID: 22408407 [TBL] [Abstract][Full Text] [Related]
34. Occurrence and Transport of Isothiazolinone-Type Biocides from Commercial Products to Aquatic Environment and Environmental Risk Assessment. Paun I; Pirvu F; Iancu VI; Chiriac FL Int J Environ Res Public Health; 2022 Jun; 19(13):. PubMed ID: 35805435 [TBL] [Abstract][Full Text] [Related]
35. Degradation kinetics of a potent antifouling agent, butenolide, under various environmental conditions. Chen L; Xu Y; Wang W; Qian PY Chemosphere; 2015 Jan; 119():1075-1083. PubMed ID: 25460745 [TBL] [Abstract][Full Text] [Related]
36. Glutathione S-transferase activity in aquatic macrophytes and halophytes and biotransformation potential for biocides. Dos Santos RN; Machado BR; Hefler SM; Zanette J J Plant Res; 2021 May; 134(3):577-584. PubMed ID: 33682041 [TBL] [Abstract][Full Text] [Related]
37. Analysis of isothiazolinone biocides in paper for food packaging by ultra-high-performance liquid chromatography-tandem mass spectrometry. Lin QB; Wang TJ; Song H; Li B Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2010 Dec; 27(12):1775-81. PubMed ID: 20960358 [TBL] [Abstract][Full Text] [Related]
38. Effects of five antifouling biocides on settlement and growth of zoospores from the marine macroalga Ulva lactuca L. Wendt I; Arrhenius Å; Backhaus T; Hilvarsson A; Holm K; Langford K; Tunovic T; Blanck H Bull Environ Contam Toxicol; 2013 Oct; 91(4):426-32. PubMed ID: 23846394 [TBL] [Abstract][Full Text] [Related]
39. Consumer exposure to biocides--identification of relevant sources and evaluation of possible health effects. Hahn S; Schneider K; Gartiser S; Heger W; Mangelsdorf I Environ Health; 2010 Feb; 9():7. PubMed ID: 20128903 [TBL] [Abstract][Full Text] [Related]
40. Highly active antiretroviral therapy drug combination induces oxidative stress and mitochondrial dysfunction in immortalized human blood-brain barrier endothelial cells. Manda KR; Banerjee A; Banks WA; Ercal N Free Radic Biol Med; 2011 Apr; 50(7):801-10. PubMed ID: 21193030 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]