These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 34315581)

  • 41. Aluminum-activated root malate and citrate exudation is independent of NIP1;2-facilitated root-cell-wall aluminum removal in Arabidopsis.
    Wang Y; Cai Y; Cao Y; Liu J
    Plant Signal Behav; 2018 Jan; 13(1):e1422469. PubMed ID: 29293394
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Genetic Dissection of Fe-Dependent Signaling in Root Developmental Responses to Phosphate Deficiency.
    Wang X; Wang Z; Zheng Z; Dong J; Song L; Sui L; Nussaume L; Desnos T; Liu D
    Plant Physiol; 2019 Jan; 179(1):300-316. PubMed ID: 30420567
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Adaptation to acidic soil is achieved by increased numbers of cis-acting elements regulating ALMT1 expression in Holcus lanatus.
    Chen ZC; Yokosho K; Kashino M; Zhao FJ; Yamaji N; Ma JF
    Plant J; 2013 Oct; 76(1):10-23. PubMed ID: 23773148
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Evidence for the plasma membrane localization of Al-activated malate transporter (ALMT1).
    Yamaguchi M; Sasaki T; Sivaguru M; Yamamoto Y; Osawa H; Ahn SJ; Matsumoto H
    Plant Cell Physiol; 2005 May; 46(5):812-6. PubMed ID: 15769806
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Physical analysis of the complex rye (Secale cereale L.) Alt4 aluminium (aluminum) tolerance locus using a whole-genome BAC library of rye cv. Blanco.
    Shi BJ; Gustafson JP; Button J; Miyazaki J; Pallotta M; Gustafson N; Zhou H; Langridge P; Collins NC
    Theor Appl Genet; 2009 Aug; 119(4):695-704. PubMed ID: 19529908
    [TBL] [Abstract][Full Text] [Related]  

  • 46. MEDIATOR16 orchestrates local and systemic responses to phosphate scarcity in Arabidopsis roots.
    Raya-González J; Ojeda-Rivera JO; Mora-Macias J; Oropeza-Aburto A; Ruiz-Herrera LF; López-Bucio J; Herrera-Estrella L
    New Phytol; 2021 Feb; 229(3):1278-1288. PubMed ID: 33034045
    [TBL] [Abstract][Full Text] [Related]  

  • 47. An exclusion mechanism is epistatic to an internal detoxification mechanism in aluminum resistance in Arabidopsis.
    Wang Y; Yu W; Cao Y; Cai Y; Lyi SM; Wu W; Kang Y; Liang C; Liu J
    BMC Plant Biol; 2020 Mar; 20(1):122. PubMed ID: 32188405
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Structural basis of ALMT1-mediated aluminum resistance in Arabidopsis.
    Wang J; Yu X; Ding ZJ; Zhang X; Luo Y; Xu X; Xie Y; Li X; Yuan T; Zheng SJ; Yang W; Guo J
    Cell Res; 2022 Jan; 32(1):89-98. PubMed ID: 34799726
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Overexpression of AtALMT1 in the Arabidopsis thaliana ecotype Columbia results in enhanced Al-activated malate excretion and beneficial bacterium recruitment.
    Kobayashi Y; Lakshmanan V; Kobayashi Y; Asai M; Iuchi S; Kobayashi M; Bais HP; Koyama H
    Plant Signal Behav; 2013 Sep; 8(9):. PubMed ID: 23857348
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Not all ALMT1-type transporters mediate aluminum-activated organic acid responses: the case of ZmALMT1 - an anion-selective transporter.
    Piñeros MA; Cançado GM; Maron LG; Lyi SM; Menossi M; Kochian LV
    Plant J; 2008 Jan; 53(2):352-67. PubMed ID: 18069943
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Aluminum-Dependent Terminal Differentiation of the Arabidopsis Root Tip Is Mediated through an ATR-, ALT2-, and SOG1-Regulated Transcriptional Response.
    Sjogren CA; Bolaris SC; Larsen PB
    Plant Cell; 2015 Sep; 27(9):2501-15. PubMed ID: 26320227
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Heterologous Expression of a
    Liu YT; Shi QH; Cao HJ; Ma QB; Nian H; Zhang XX
    Int J Mol Sci; 2020 Apr; 21(8):. PubMed ID: 32326652
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Malate-dependent Fe accumulation is a critical checkpoint in the root developmental response to low phosphate.
    Mora-Macías J; Ojeda-Rivera JO; Gutiérrez-Alanís D; Yong-Villalobos L; Oropeza-Aburto A; Raya-González J; Jiménez-Domínguez G; Chávez-Calvillo G; Rellán-Álvarez R; Herrera-Estrella L
    Proc Natl Acad Sci U S A; 2017 Apr; 114(17):E3563-E3572. PubMed ID: 28400510
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A WRKY transcription factor confers aluminum tolerance via regulation of cell wall modifying genes.
    Li CX; Yan JY; Ren JY; Sun L; Xu C; Li GX; Ding ZJ; Zheng SJ
    J Integr Plant Biol; 2020 Aug; 62(8):1176-1192. PubMed ID: 31729146
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The MEKK1-MKK1/2-MPK4 cascade phosphorylates and stabilizes STOP1 to confer aluminum resistance in Arabidopsis.
    Zhou F; Singh S; Zhang J; Fang Q; Li C; Wang J; Zhao C; Wang P; Huang CF
    Mol Plant; 2023 Feb; 16(2):337-353. PubMed ID: 36419357
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A domain-based approach for analyzing the function of aluminum-activated malate transporters from wheat (Triticum aestivum) and Arabidopsis thaliana in Xenopus oocytes.
    Sasaki T; Tsuchiya Y; Ariyoshi M; Ryan PR; Furuichi T; Yamamoto Y
    Plant Cell Physiol; 2014 Dec; 55(12):2126-38. PubMed ID: 25311199
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Molecular and physiological strategies to increase aluminum resistance in plants.
    Inostroza-Blancheteau C; Rengel Z; Alberdi M; de la Luz Mora M; Aquea F; Arce-Johnson P; Reyes-Díaz M
    Mol Biol Rep; 2012 Mar; 39(3):2069-79. PubMed ID: 21660471
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Dissection of Root Transcriptional Responses to Low pH, Aluminum Toxicity and Iron Excess Under Pi-Limiting Conditions in Arabidopsis Wild-Type and
    Ojeda-Rivera JO; Oropeza-Aburto A; Herrera-Estrella L
    Front Plant Sci; 2020; 11():01200. PubMed ID: 33133111
    [TBL] [Abstract][Full Text] [Related]  

  • 59. STOP1, a Cys2/His2 type zinc-finger protein, plays critical role in acid soil tolerance in Arabidopsis.
    Iuchi S; Kobayashi Y; Koyama H; Kobayashi M
    Plant Signal Behav; 2008 Feb; 3(2):128-30. PubMed ID: 19704731
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Arabidopsis transcription factor STOP1 directly activates expression of NOD26-LIKE MAJOR INTRINSIC PROTEIN5;1, and is involved in the regulation of tolerance to low-boron stress.
    Zhang C; He M; Jiang Z; Liu T; Wang C; Wang S; Xu F
    J Exp Bot; 2024 Apr; 75(8):2574-2583. PubMed ID: 38307018
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.