These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 34315594)
1. Surface plasmon resonance: An innovative method for studying water permeability of plant cuticles. Vráblová M; Marková D; Vrábl D; Koutník I; Sokolová B; Hronková M Plant Sci; 2021 Sep; 310():110978. PubMed ID: 34315594 [TBL] [Abstract][Full Text] [Related]
2. A new technique for measurement of water permeability of stomatous cuticular membranes isolated from Hedera helix leaves. Santrůcek J; Simánová E; Karbulková J; Simková M; Schreiber L J Exp Bot; 2004 Jun; 55(401):1411-22. PubMed ID: 15155780 [TBL] [Abstract][Full Text] [Related]
3. Epicuticular wax on cherry laurel (Prunus laurocerasus) leaves does not constitute the cuticular transpiration barrier. Zeisler V; Schreiber L Planta; 2016 Jan; 243(1):65-81. PubMed ID: 26341347 [TBL] [Abstract][Full Text] [Related]
4. A novel approach for measuring membrane permeability for organic compounds via surface plasmon resonance detection. Vráblová M; Smutná K; Koutník I; Marková D; Vrábl D; Górecki KM; Žebrák R Chemosphere; 2023 Jan; 312(Pt 1):137165. PubMed ID: 36356810 [TBL] [Abstract][Full Text] [Related]
5. Chemical Composition and Water Permeability of Fruit and Leaf Cuticles of Olea europaea L. Huang H; Burghardt M; Schuster AC; Leide J; Lara I; Riederer M J Agric Food Chem; 2017 Oct; 65(40):8790-8797. PubMed ID: 28880084 [TBL] [Abstract][Full Text] [Related]
6. The presence of cutan limits the interpretation of cuticular chemistry and structure: Ficus elastica leaf as an example. Guzmán-Delgado P; Graça J; Cabral V; Gil L; Fernández V Physiol Plant; 2016 Jun; 157(2):205-20. PubMed ID: 26756450 [TBL] [Abstract][Full Text] [Related]
7. Protecting against water loss: analysis of the barrier properties of plant cuticles. Riederer M; Schreiber L J Exp Bot; 2001 Oct; 52(363):2023-32. PubMed ID: 11559738 [TBL] [Abstract][Full Text] [Related]
8. A modified method for enzymatic isolation of and subsequent wax extraction from Vráblová M; Vrábl D; Sokolová B; Marková D; Hronková M Plant Methods; 2020; 16():129. PubMed ID: 32973915 [TBL] [Abstract][Full Text] [Related]
9. Chemical composition and water permeability of the cuticular wax barrier in rose leaf and petal: A comparative investigation. Cheng G; Huang H; Zhou L; He S; Zhang Y; Cheng X Plant Physiol Biochem; 2019 Feb; 135():404-410. PubMed ID: 30635221 [TBL] [Abstract][Full Text] [Related]
10. Constructing functional cuticles: analysis of relationships between cuticle lipid composition, ultrastructure and water barrier function in developing adult maize leaves. Bourgault R; Matschi S; Vasquez M; Qiao P; Sonntag A; Charlebois C; Mohammadi M; Scanlon MJ; Smith LG; Molina I Ann Bot; 2020 Jan; 125(1):79-91. PubMed ID: 31504131 [TBL] [Abstract][Full Text] [Related]
11. Epicuticular wax on leaf cuticles does not establish the transpiration barrier, which is essentially formed by intracuticular wax. Zeisler-Diehl V; Müller Y; Schreiber L J Plant Physiol; 2018 Aug; 227():66-74. PubMed ID: 29653782 [TBL] [Abstract][Full Text] [Related]
12. Effect of humidity on cuticular water permeability of isolated cuticular membranes and leaf disks. Schreiber L; Skrabs M; Hartmann KD; Diamantopoulos P; Simanova E; Santrucek J Planta; 2001 Dec; 214(2):274-82. PubMed ID: 11800392 [TBL] [Abstract][Full Text] [Related]
13. Building a Barrier: The Influence of Different Wax Fractions on the Water Transpiration Barrier of Leaf Cuticles. Seufert P; Staiger S; Arand K; Bueno A; Burghardt M; Riederer M Front Plant Sci; 2021; 12():766602. PubMed ID: 35069622 [TBL] [Abstract][Full Text] [Related]
14. Movement and regeneration of epicuticular waxes through plant cuticles. Neinhuis C; Koch K; Barthlott W Planta; 2001 Jul; 213(3):427-34. PubMed ID: 11506366 [TBL] [Abstract][Full Text] [Related]
15. The ecophysiology of leaf cuticular transpiration: are cuticular water permeabilities adapted to ecological conditions? Schuster AC; Burghardt M; Riederer M J Exp Bot; 2017 Nov; 68(19):5271-5279. PubMed ID: 29036342 [TBL] [Abstract][Full Text] [Related]
16. The permeation barrier of plant cuticles: uptake of active ingredients is limited by very long-chain aliphatic rather than cyclic wax compounds. Staiger S; Seufert P; Arand K; Burghardt M; Popp C; Riederer M Pest Manag Sci; 2019 Dec; 75(12):3405-3412. PubMed ID: 31436379 [TBL] [Abstract][Full Text] [Related]
17. Asymmetric water transport in dense leaf cuticles and cuticle-inspired compositionally graded membranes. Kamtsikakis A; Baales J; Zeisler-Diehl VV; Vanhecke D; Zoppe JO; Schreiber L; Weder C Nat Commun; 2021 Feb; 12(1):1267. PubMed ID: 33627645 [TBL] [Abstract][Full Text] [Related]
18. Compositional, structural and functional cuticle analysis of Prunus laurocerasus L. sheds light on cuticular barrier plasticity. Diarte C; Xavier de Souza A; Staiger S; Deininger AC; Bueno A; Burghardt M; Graell J; Riederer M; Lara I; Leide J Plant Physiol Biochem; 2021 Jan; 158():434-445. PubMed ID: 33257229 [TBL] [Abstract][Full Text] [Related]
19. Visualization of micromorphology of leaf epicuticular waxes of the rubber tree Ficus elastica by electron microscopy. Kim KW Micron; 2008 Oct; 39(7):976-84. PubMed ID: 18037304 [TBL] [Abstract][Full Text] [Related]
20. Review of sorption and diffusion of lipophilic molecules in cuticular waxes and the effects of accelerators on solute mobilities. Schreiber L J Exp Bot; 2006; 57(11):2515-23. PubMed ID: 16882646 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]