BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 34315662)

  • 1. Silicon mobilisation by root-released carboxylates.
    de Tombeur F; Cornelis JT; Lambers H
    Trends Plant Sci; 2021 Nov; 26(11):1116-1125. PubMed ID: 34315662
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microbial consortium inoculant increases pasture grasses yield in low-phosphorus soil by influencing root morphology, rhizosphere carboxylate exudation and mycorrhizal colonisation.
    Tshewang S; Rengel Z; Siddique KH; Solaiman ZM
    J Sci Food Agric; 2022 Jan; 102(2):540-549. PubMed ID: 34146349
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Convergence of a specialized root trait in plants from nutrient-impoverished soils: phosphorus-acquisition strategy in a nonmycorrhizal cactus.
    Abrahão A; Lambers H; Sawaya AC; Mazzafera P; Oliveira RS
    Oecologia; 2014 Oct; 176(2):345-55. PubMed ID: 25135179
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Peppermint trees shift their phosphorus-acquisition strategy along a strong gradient of plant-available phosphorus by increasing their transpiration at very low phosphorus availability.
    Huang G; Hayes PE; Ryan MH; Pang J; Lambers H
    Oecologia; 2017 Nov; 185(3):387-400. PubMed ID: 28924626
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mineral nutrition of campos rupestres plant species on contrasting nutrient-impoverished soil types.
    Oliveira RS; Galvão HC; de Campos MCR; Eller CB; Pearse SJ; Lambers H
    New Phytol; 2015 Feb; 205(3):1183-1194. PubMed ID: 25425486
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The wheat secreted root proteome: Implications for phosphorus mobilisation and biotic interactions.
    Staudinger C; Dissanayake BM; Duncan O; Millar AH
    J Proteomics; 2022 Feb; 252():104450. PubMed ID: 34890868
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plant adaptations to severely phosphorus-impoverished soils.
    Lambers H; Martinoia E; Renton M
    Curr Opin Plant Biol; 2015 Jun; 25():23-31. PubMed ID: 25912783
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Moderating mycorrhizas: arbuscular mycorrhizas modify rhizosphere chemistry and maintain plant phosphorus status within narrow boundaries.
    Nazeri NK; Lambers H; Tibbett M; Ryan MH
    Plant Cell Environ; 2014 Apr; 37(4):911-21. PubMed ID: 24112081
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The carboxylate-releasing phosphorus-mobilizing strategy can be proxied by foliar manganese concentration in a large set of chickpea germplasm under low phosphorus supply.
    Pang J; Bansal R; Zhao H; Bohuon E; Lambers H; Ryan MH; Ranathunge K; Siddique KHM
    New Phytol; 2018 Jul; 219(2):518-529. PubMed ID: 29756639
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbon trading for phosphorus gain: the balance between rhizosphere carboxylates and arbuscular mycorrhizal symbiosis in plant phosphorus acquisition.
    Ryan MH; Tibbett M; Edmonds-Tibbett T; Suriyagoda LD; Lambers H; Cawthray GR; Pang J
    Plant Cell Environ; 2012 Dec; 35(12):2170-80. PubMed ID: 22632405
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carboxylate concentrations in the rhizosphere of lateral roots of chickpea (Cicer arietinum) increase during plant development, but are not correlated with phosphorus status of soil or plants.
    Wouterlood M; Cawthray GR; Scanlon TT; Lambers H; Veneklaas EJ
    New Phytol; 2004 Jun; 162(3):745-753. PubMed ID: 33873771
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of mycorrhizas and root exudates in plant uptake of soil nutrients (calcium, iron, magnesium, and potassium): has the puzzle been completely solved?
    Sardans J; Lambers H; Preece C; Alrefaei AF; Penuelas J
    Plant J; 2023 Jun; 114(6):1227-1242. PubMed ID: 36917083
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The potential for phosphorus benefits through root placement in the rhizosphere of phosphorus-mobilising neighbours.
    Teste FP; Dixon KW; Lambers H; Zhou J; Veneklaas EJ
    Oecologia; 2020 Aug; 193(4):843-855. PubMed ID: 32816111
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The influence of mycorrhiza on uranium and phosphorus uptake by barley plants from a field-contaminated soil.
    Chen B; Zhu YG; Zhang X; Jakobsen I
    Environ Sci Pollut Res Int; 2005 Nov; 12(6):325-31. PubMed ID: 16305138
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphorus Acquisition and Utilization in Plants.
    Lambers H
    Annu Rev Plant Biol; 2022 May; 73():17-42. PubMed ID: 34910587
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nutrient availability and management in the rhizosphere: exploiting genotypic differences.
    Rengel Z; Marschner P
    New Phytol; 2005 Nov; 168(2):305-12. PubMed ID: 16219070
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nutrient cycling in forests.
    Attiwill PM; Adams MA
    New Phytol; 1993 Aug; 124(4):561-582. PubMed ID: 33874438
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphorus-mobilization ecosystem engineering: the roles of cluster roots and carboxylate exudation in young P-limited ecosystems.
    Lambers H; Bishop JG; Hopper SD; Laliberté E; Zúñiga-Feest A
    Ann Bot; 2012 Jul; 110(2):329-48. PubMed ID: 22700940
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plant phosphorus-use and -acquisition strategies in Amazonia.
    Reichert T; Rammig A; Fuchslueger L; Lugli LF; Quesada CA; Fleischer K
    New Phytol; 2022 May; 234(4):1126-1143. PubMed ID: 35060130
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Root exudation, phosphorus acquisition, and microbial diversity in the rhizosphere of white lupine as affected by phosphorus supply and atmospheric carbon dioxide concentration.
    Wasaki J; Rothe A; Kania A; Neumann G; Römheld V; Shinano T; Osaki M; Kandeler E
    J Environ Qual; 2005; 34(6):2157-66. PubMed ID: 16275716
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.