BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 34315813)

  • 1. Dynamic changes in RNA-protein interactions and RNA secondary structure in mammalian erythropoiesis.
    Shan M; Ji X; Janssen K; Silverman IM; Humenik J; Garcia BA; Liebhaber SA; Gregory BD
    Life Sci Alliance; 2021 Sep; 4(9):. PubMed ID: 34315813
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RNA-protein interactions: an overview.
    Re A; Joshi T; Kulberkyte E; Morris Q; Workman CT
    Methods Mol Biol; 2014; 1097():491-521. PubMed ID: 24639174
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Global analysis of the RNA-protein interaction and RNA secondary structure landscapes of the Arabidopsis nucleus.
    Gosai SJ; Foley SW; Wang D; Silverman IM; Selamoglu N; Nelson AD; Beilstein MA; Daldal F; Deal RB; Gregory BD
    Mol Cell; 2015 Jan; 57(2):376-88. PubMed ID: 25557549
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RNA Sequence Context Effects Measured In Vitro Predict In Vivo Protein Binding and Regulation.
    Taliaferro JM; Lambert NJ; Sudmant PH; Dominguez D; Merkin JJ; Alexis MS; Bazile C; Burge CB
    Mol Cell; 2016 Oct; 64(2):294-306. PubMed ID: 27720642
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The RNA-binding protein QKI5 regulates primary miR-124-1 processing via a distal RNA motif during erythropoiesis.
    Wang F; Song W; Zhao H; Ma Y; Li Y; Zhai D; Pi J; Si Y; Xu J; Dong L; Su R; Zhang M; Zhu Y; Ren X; Miao F; Liu W; Li F; Zhang J; He A; Shan G; Hui J; Wang L; Yu J
    Cell Res; 2017 Mar; 27(3):416-439. PubMed ID: 28244490
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human protein-RNA interaction network is highly stable across mammals.
    Ramakrishnan A; Janga SC
    BMC Genomics; 2019 Dec; 20(Suppl 12):1004. PubMed ID: 31888461
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-throughput characterization of protein-RNA interactions.
    Cook KB; Hughes TR; Morris QD
    Brief Funct Genomics; 2015 Jan; 14(1):74-89. PubMed ID: 25504152
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A deep learning framework for modeling structural features of RNA-binding protein targets.
    Zhang S; Zhou J; Hu H; Gong H; Chen L; Cheng C; Zeng J
    Nucleic Acids Res; 2016 Feb; 44(4):e32. PubMed ID: 26467480
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RBP-Var: a database of functional variants involved in regulation mediated by RNA-binding proteins.
    Mao F; Xiao L; Li X; Liang J; Teng H; Cai W; Sun ZS
    Nucleic Acids Res; 2016 Jan; 44(D1):D154-63. PubMed ID: 26635394
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Finding the target sites of RNA-binding proteins.
    Li X; Kazan H; Lipshitz HD; Morris QD
    Wiley Interdiscip Rev RNA; 2014; 5(1):111-30. PubMed ID: 24217996
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of clustered RNA-binding protein motif sites in the mammalian genome.
    Zhang C; Lee KY; Swanson MS; Darnell RB
    Nucleic Acids Res; 2013 Aug; 41(14):6793-807. PubMed ID: 23685613
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of RNA-protein sequence and structure binding preferences using deep convolutional and recurrent neural networks.
    Pan X; Rijnbeek P; Yan J; Shen HB
    BMC Genomics; 2018 Jul; 19(1):511. PubMed ID: 29970003
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A combined sequence and structure based method for discovering enriched motifs in RNA from in vivo binding data.
    Polishchuk M; Paz I; Kohen R; Mesika R; Yakhini Z; Mandel-Gutfreund Y
    Methods; 2017 Apr; 118-119():73-81. PubMed ID: 28274760
    [TBL] [Abstract][Full Text] [Related]  

  • 14. mCarts: Genome-Wide Prediction of Clustered Sequence Motifs as Binding Sites for RNA-Binding Proteins.
    Weyn-Vanhentenryck SM; Zhang C
    Methods Mol Biol; 2016; 1421():215-26. PubMed ID: 26965268
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RNA Bind-n-Seq: Measuring the Binding Affinity Landscape of RNA-Binding Proteins.
    Lambert NJ; Robertson AD; Burge CB
    Methods Enzymol; 2015; 558():465-493. PubMed ID: 26068750
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RNA-Binding Protein Expression Alters Upon Differentiation of Human B Cells and T Cells.
    Zandhuis ND; Nicolet BP; Wolkers MC
    Front Immunol; 2021; 12():717324. PubMed ID: 34867946
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RBPmap: A Tool for Mapping and Predicting the Binding Sites of RNA-Binding Proteins Considering the Motif Environment.
    Paz I; Argoetti A; Cohen N; Even N; Mandel-Gutfreund Y
    Methods Mol Biol; 2022; 2404():53-65. PubMed ID: 34694603
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Matrix-screening reveals a vast potential for direct protein-protein interactions among RNA binding proteins.
    Lang B; Yang JS; Garriga-Canut M; Speroni S; Aschern M; Gili M; Hoffmann T; Tartaglia GG; Maurer SP
    Nucleic Acids Res; 2021 Jul; 49(12):6702-6721. PubMed ID: 34133714
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Finding RNA structure in the unstructured RBPome.
    Orenstein Y; Ohler U; Berger B
    BMC Genomics; 2018 Feb; 19(1):154. PubMed ID: 29463232
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ssHMM: extracting intuitive sequence-structure motifs from high-throughput RNA-binding protein data.
    Heller D; Krestel R; Ohler U; Vingron M; Marsico A
    Nucleic Acids Res; 2017 Nov; 45(19):11004-11018. PubMed ID: 28977546
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.