These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 34315891)

  • 1. Transporter characterisation reveals aminoethylphosphonate mineralisation as a key step in the marine phosphorus redox cycle.
    Murphy ARJ; Scanlan DJ; Chen Y; Adams NBP; Cadman WA; Bottrill A; Bending G; Hammond JP; Hitchcock A; Wellington EMH; Lidbury IDEA
    Nat Commun; 2021 Jul; 12(1):4554. PubMed ID: 34315891
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphorus cycling. Major role of planktonic phosphate reduction in the marine phosphorus redox cycle.
    Van Mooy BA; Krupke A; Dyhrman ST; Fredricks HF; Frischkorn KR; Ossolinski JE; Repeta DJ; Rouco M; Seewald JD; Sylva SP
    Science; 2015 May; 348(6236):783-5. PubMed ID: 25977548
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 2-Aminoethylphosphonate utilization in Pseudomonas putida BIRD-1 is controlled by multiple master regulators.
    Murphy ARJ; Scanlan DJ; Chen Y; Bending GD; Hammond JP; Wellington EMH; Lidbury IDEA
    Environ Microbiol; 2022 Apr; 24(4):1902-1917. PubMed ID: 35229442
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection and expression of the phosphonate transporter gene phnD in marine and freshwater picocyanobacteria.
    Ilikchyan IN; McKay RM; Zehr JP; Dyhrman ST; Bullerjahn GS
    Environ Microbiol; 2009 May; 11(5):1314-24. PubMed ID: 19220397
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphate starvation-independent 2-aminoethylphosphonic acid biodegradation in a newly isolated strain of Pseudomonas putida, NG2.
    Ternan NG; Quinn JP
    Syst Appl Microbiol; 1998 Aug; 21(3):346-52. PubMed ID: 9841125
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphate insensitive aminophosphonate mineralisation within oceanic nutrient cycles.
    Chin JP; Quinn JP; McGrath JW
    ISME J; 2018 Apr; 12(4):973-980. PubMed ID: 29339823
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phosphonate utilization by the globally important marine diazotroph Trichodesmium.
    Dyhrman ST; Chappell PD; Haley ST; Moffett JW; Orchard ED; Waterbury JB; Webb EA
    Nature; 2006 Jan; 439(7072):68-71. PubMed ID: 16397497
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphonate utilization by bacteria.
    Cook AM; Daughton CG; Alexander M
    J Bacteriol; 1978 Jan; 133(1):85-90. PubMed ID: 618850
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potential for phosphite and phosphonate utilization by Prochlorococcus.
    Feingersch R; Philosof A; Mejuch T; Glaser F; Alalouf O; Shoham Y; Béjà O
    ISME J; 2012 Apr; 6(4):827-34. PubMed ID: 22011717
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Planning Implications Related to Sterilization-Sensitive Science Investigations Associated with Mars Sample Return (MSR).
    Velbel MA; Cockell CS; Glavin DP; Marty B; Regberg AB; Smith AL; Tosca NJ; Wadhwa M; Kminek G; Meyer MA; Beaty DW; Carrier BL; Haltigin T; Hays LE; Agee CB; Busemann H; Cavalazzi B; Debaille V; Grady MM; Hauber E; Hutzler A; McCubbin FM; Pratt LM; Smith CL; Summons RE; Swindle TD; Tait KT; Udry A; Usui T; Westall F; Zorzano MP
    Astrobiology; 2022 Jun; 22(S1):S112-S164. PubMed ID: 34904892
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [2-Amino-ethylphosphonic acid transport in Pseudomonas aeruginosa].
    Lacoste AM; Cassaigne A; Tamari M; Neuzil E
    Biochimie; 1976; 58(6):703-12. PubMed ID: 821545
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Uncovering the Ediacaran phosphorus cycle.
    Dodd MS; Shi W; Li C; Zhang Z; Cheng M; Gu H; Hardisty DS; Loyd SJ; Wallace MW; vS Hood A; Lamothe K; Mills BJW; Poulton SW; Lyons TW
    Nature; 2023 Jun; 618(7967):974-980. PubMed ID: 37258677
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oceans. New pieces for the marine sulfur cycle jigsaw.
    Malin G
    Science; 2006 Oct; 314(5799):607-8. PubMed ID: 17068252
    [No Abstract]   [Full Text] [Related]  

  • 14. Elucidation of glutamine lipid biosynthesis in marine bacteria reveals its importance under phosphorus deplete growth in Rhodobacteraceae.
    Smith AF; Rihtman B; Stirrup R; Silvano E; Mausz MA; Scanlan DJ; Chen Y
    ISME J; 2019 Jan; 13(1):39-49. PubMed ID: 30108306
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphonoacetate biosynthesis: in vitro detection of a novel NADP(+)-dependent phosphonoacetaldehyde-oxidizing activity in cell-extracts of the marine Roseovarius nubinhibens ISM.
    Cooley NA; Kulakova AN; Villarreal-Chiu JF; Gilbert JA; McGrath JW; Quinn JP
    Mikrobiologiia; 2011; 80(3):329-34. PubMed ID: 21861368
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bacterial taxa that limit sulfur flux from the ocean.
    Howard EC; Henriksen JR; Buchan A; Reisch CR; Bürgmann H; Welsh R; Ye W; González JM; Mace K; Joye SB; Kiene RP; Whitman WB; Moran MA
    Science; 2006 Oct; 314(5799):649-52. PubMed ID: 17068264
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microbially mediated transformations of phosphorus in the sea: new views of an old cycle.
    Karl DM
    Ann Rev Mar Sci; 2014; 6():279-337. PubMed ID: 24405427
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcriptomic-Guided Phosphonate Utilization Analysis Unveils Evidence of Clathrin-Mediated Endocytosis and Phospholipid Synthesis in the Model Diatom,
    Shu H; You Y; Wang H; Wang J; Li L; Ma J; Lin X
    mSystems; 2022 Dec; 7(6):e0056322. PubMed ID: 36317887
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Utilization of phosphonic acid compounds by marine bacteria of the genera Phaeobacter, Ruegeria, and Thalassospira (α-Proteobacteria).
    Urata S; Kurosawa Y; Yamasaki N; Yamamoto H; Nishiwaki N; Hongo Y; Adachi M; Yamaguchi H
    FEMS Microbiol Lett; 2022 Aug; 369(1):. PubMed ID: 35906193
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatial coupling of nitrogen inputs and losses in the ocean.
    Deutsch C; Sarmiento JL; Sigman DM; Gruber N; Dunne JP
    Nature; 2007 Jan; 445(7124):163-7. PubMed ID: 17215838
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.