These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 34316079)
1. The relationship between CM and CO chondrites: Insights from combined analyses of titanium, chromium, and oxygen isotopes in CM, CO, and ungrouped chondrites. Torrano ZA; Schrader DL; Davidson J; Greenwood RC; Dunlap DR; Wadhwa M Geochim Cosmochim Acta; 2021 May; 301():70-90. PubMed ID: 34316079 [TBL] [Abstract][Full Text] [Related]
2. Chromium isotopic insights into the origin of chondrite parent bodies and the early terrestrial volatile depletion. Zhu K; Moynier F; Schiller M; Alexander CMO; Davidson J; Schrader DL; van Kooten E; Bizzarro M Geochim Cosmochim Acta; 2021 May; 301():158-186. PubMed ID: 34393262 [TBL] [Abstract][Full Text] [Related]
3. Petrogenesis and Provenance of Ungrouped Achondrite Northwest Africa 7325 from Petrology, Trace Elements, Oxygen, Chromium and Titanium Isotopes, and Mid-IR Spectroscopy. Goodrich CA; Kita NT; Yin QZ; Sanborn ME; Williams CD; Nakashima D; Lane MD; Boyle S Geochim Cosmochim Acta; 2017 Apr; 203():381-403. PubMed ID: 30393389 [TBL] [Abstract][Full Text] [Related]
4. Oxygen isotope systematics of chondrules in the Murchison CM2 chondrite and implications for the CO-CM relationship. Chaumard N; Defouilloy C; Kita NT Geochim Cosmochim Acta; 2018 May; 228():220-242. PubMed ID: 30713349 [TBL] [Abstract][Full Text] [Related]
5. Magnesium and Olsen MB; Wielandt D; Schiller M; Van Kooten EM; Bizzarro M Geochim Cosmochim Acta; 2016 Oct; 191():118-138. PubMed ID: 27563152 [TBL] [Abstract][Full Text] [Related]
6. Titanium isotope signatures of calcium-aluminum-rich inclusions from CV and CK chondrites: Implications for early Solar System reservoirs and mixing. Torrano ZA; Brennecka GA; Williams CD; Romaniello SJ; Rai VK; Wadhwa M Geochim Cosmochim Acta; 2019 Oct; 263():13-30. PubMed ID: 33414563 [TBL] [Abstract][Full Text] [Related]
7. The origin of the unique achondrite Northwest Africa 6704: Constraints from petrology, chemistry and Re-Os, O and Ti isotope systematics. Hibiya Y; Archer GJ; Tanaka R; Sanborn ME; Sato Y; Iizuka T; Ozawa K; Walker RJ; Yamaguchi A; Yin QZ; Nakamura T; Irving AJ Geochim Cosmochim Acta; 2019 Jan; 245():597-627. PubMed ID: 30983599 [TBL] [Abstract][Full Text] [Related]
8. Formation of chondrules in a moderately high dust enriched disk: evidence from oxygen isotopes of chondrules from the Kaba CV3 chondrite. Hertwig AT; Defouilloy C; Kita NT Geochim Cosmochim Acta; 2018 Mar; 224():116-131. PubMed ID: 30713348 [TBL] [Abstract][Full Text] [Related]
9. Evidence for oxygen isotopic exchange in chondrules from Kaba (CV3.1) carbonaceous chondrite during aqueous fluid-rock interaction on the CV parent asteroid. Krot AN; Nagashima K; Fintor K; Pál-Molnár E Acta Geogr Geol Meteorol Debr Geol Gemorfol Termeszfoldr Sor; 2019 Feb; 246():419-435. PubMed ID: 30930966 [TBL] [Abstract][Full Text] [Related]
10. Early aqueous activity on the ordinary and carbonaceous chondrite parent bodies recorded by fayalite. Doyle PM; Jogo K; Nagashima K; Krot AN; Wakita S; Ciesla FJ; Hutcheon ID Nat Commun; 2015 Jun; 6():7444. PubMed ID: 26100451 [TBL] [Abstract][Full Text] [Related]
11. The origin of chondritic macromolecular organic matter: a carbon and nitrogen isotope study. Alexander CM; Russell SS; Arden JW; Ash RD; Grady MM; Pillinger CT Meteorit Planet Sci; 1998 Jul; 33(4):603-22. PubMed ID: 11543070 [TBL] [Abstract][Full Text] [Related]
12. The Ni isotopic composition of Ryugu reveals a common accretion region for carbonaceous chondrites. Spitzer F; Kleine T; Burkhardt C; Hopp T; Yokoyama T; Abe Y; Aléon J; O'D Alexander CM; Amari S; Amelin Y; Bajo KI; Bizzarro M; Bouvier A; Carlson RW; Chaussidon M; Choi BG; Dauphas N; Davis AM; Di Rocco T; Fujiya W; Fukai R; Gautam I; Haba MK; Hibiya Y; Hidaka H; Homma H; Hoppe P; Huss GR; Ichida K; Iizuka T; Ireland TR; Ishikawa A; Itoh S; Kawasaki N; Kita NT; Kitajima K; Komatani S; Krot AN; Liu MC; Masuda Y; Morita M; Moynier F; Motomura K; Nakai I; Nagashima K; Nguyen A; Nittler L; Onose M; Pack A; Park C; Piani L; Qin L; Russell SS; Sakamoto N; Schönbächler M; Tafla L; Tang H; Terada K; Terada Y; Usui T; Wada S; Wadhwa M; Walker RJ; Yamashita K; Yin QZ; Yoneda S; Young ED; Yui H; Zhang AC; Nakamura T; Naraoka H; Noguchi T; Okazaki R; Sakamoto K; Yabuta H; Abe M; Miyazaki A; Nakato A; Nishimura M; Okada T; Yada T; Yogata K; Nakazawa S; Saiki T; Tanaka S; Terui F; Tsuda Y; Watanabe SI; Yoshikawa M; Tachibana S; Yurimoto H Sci Adv; 2024 Sep; 10(39):eadp2426. PubMed ID: 39331721 [TBL] [Abstract][Full Text] [Related]
14. The role of Bells in the continuous accretion between the CM and CR chondrite reservoirs. van Kooten E; Cavalcante L; Wielandt D; Bizzarro M Meteorit Planet Sci; 2020 Mar; 55(3):575-590. PubMed ID: 32362738 [TBL] [Abstract][Full Text] [Related]
15. Accretion and differentiation of carbon in the early Earth. Tingle TN Chem Geol; 1998 May; 147(1-2):3-10. PubMed ID: 11543125 [TBL] [Abstract][Full Text] [Related]
16. Geochemical arguments for an Earth-like Moon-forming impactor. Dauphas N; Burkhardt C; Warren PH; Fang-Zhen T Philos Trans A Math Phys Eng Sci; 2014 Sep; 372(2024):20130244. PubMed ID: 25114316 [TBL] [Abstract][Full Text] [Related]
17. Origin of crystalline silicates from Comet 81P/Wild 2: Combined study on their oxygen isotopes and mineral chemistry. Defouilloy C; Nakashima D; Joswiak DJ; Brownlee DE; Tenner TJ; Kita NT Earth Planet Sci Lett; 2017 May; 465():145-154. PubMed ID: 30705461 [TBL] [Abstract][Full Text] [Related]
19. Oxygen isotope systematics of chondrules in the Paris CM2 chondrite: indication for a single large formation region across snow line. Chaumard N; Defouilloy C; Hertwig AT; Kita NT Geochim Cosmochim Acta; 2021 Apr; 299():199-218. PubMed ID: 34776527 [TBL] [Abstract][Full Text] [Related]