BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 34316412)

  • 21. Systems biology approach identifies key regulators and the interplay between miRNAs and transcription factors for pathological cardiac hypertrophy.
    Recamonde-Mendoza M; Werhli AV; Biolo A
    Gene; 2019 May; 698():157-169. PubMed ID: 30844478
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A pan-cancer study of copy number gain and up-regulation in human oncogenes.
    Wee Y; Wang T; Liu Y; Li X; Zhao M
    Life Sci; 2018 Oct; 211():206-214. PubMed ID: 30243646
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A global view of the oncogenic landscape in nasopharyngeal carcinoma: an integrated analysis at the genetic and expression levels.
    Hu C; Wei W; Chen X; Woodman CB; Yao Y; Nicholls JM; Joab I; Sihota SK; Shao JY; Derkaoui KD; Amari A; Maloney SL; Bell AI; Murray PG; Dawson CW; Young LS; Arrand JR
    PLoS One; 2012; 7(7):e41055. PubMed ID: 22815911
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identification of aberrantly methylated differentially expressed genes in breast cancer by integrated bioinformatics analysis.
    Yi L; Luo P; Zhang J
    J Cell Biochem; 2019 Sep; 120(9):16229-16243. PubMed ID: 31081184
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Identification of MicroRNA-Target Gene-Transcription Factor Regulatory Networks in Colorectal Adenoma Using Microarray Expression Data.
    Gao Y; Zhang S; Zhang Y; Qian J
    Front Genet; 2020; 11():463. PubMed ID: 32508878
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Exploration and validation of downregulated microRNA-199a-3p, downstream messenger RNA targets and transcriptional regulation in osteosarcoma.
    Huang WT; Liu AG; Cai KT; He RQ; Li Z; Wei QJ; Chen MY; Huang JY; Yan WY; Zhou H; Chen G; Ma J
    Am J Transl Res; 2019; 11(12):7538-7554. PubMed ID: 31934299
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Regulating the regulators: modulators of transcription factor activity.
    Everett L; Hansen M; Hannenhalli S
    Methods Mol Biol; 2010; 674():297-312. PubMed ID: 20827600
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Key elements involved in Epstein-Barr virus-associated gastric cancer and their network regulation.
    Jing JJ; Wang ZY; Li H; Sun LP; Yuan Y
    Cancer Cell Int; 2018; 18():146. PubMed ID: 30258285
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Computational Identification of Tumor Suppressor Genes Based on Gene Expression Profiles in Normal and Cancerous Gastrointestinal Tissues.
    Sun Q; Uddin MN; Li M; Wang X; Lai M
    J Oncol; 2020; 2020():2503790. PubMed ID: 32774369
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Somatic selection distinguishes oncogenes and tumor suppressor genes.
    Chandrashekar P; Ahmadinejad N; Wang J; Sekulic A; Egan JB; Asmann YW; Kumar S; Maley C; Liu L
    Bioinformatics; 2020 Mar; 36(6):1712-1717. PubMed ID: 32176769
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A modulator based regulatory network for ERα signaling pathway.
    Wu HY; Zheng P; Jiang G; Liu Y; Nephew KP; Huang TH; Li L
    BMC Genomics; 2012; 13 Suppl 6(Suppl 6):S6. PubMed ID: 23134758
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Oncogenes without a Neighboring Tumor-Suppressor Gene Are More Prone to Amplification.
    Wu WK; Li X; Wang X; Dai RZ; Cheng AS; Wang MH; Kwong T; Chow TC; Yu J; Chan MT; Wong SH
    Mol Biol Evol; 2017 Apr; 34(4):903-907. PubMed ID: 28087780
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Disease association of human tumor suppressor genes.
    Das AB
    Mol Genet Genomics; 2019 Aug; 294(4):931-940. PubMed ID: 30945018
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cellular and molecular biological aspects of human bronchogenic carcinogenesis.
    Willey JC; Harris CC
    Crit Rev Oncol Hematol; 1990; 10(2):181-209. PubMed ID: 2193649
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Integrated analysis of microRNA and transcription factor reveals important regulators and regulatory motifs in adult B-cell acute lymphoblastic leukemia.
    Lin XC; Liu XG; Zhang YM; Li N; Yang ZG; Fu WY; Lan LB; Zhang HT; Dai Y
    Int J Oncol; 2017 Feb; 50(2):671-683. PubMed ID: 28101583
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identification of upstream regulators for synovial expression signature genes in osteoarthritis.
    Fei Q; Lin J; Meng H; Wang B; Yang Y; Wang Q; Su N; Li J; Li D
    Joint Bone Spine; 2016 Oct; 83(5):545-51. PubMed ID: 26832188
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The other side of the coin: the tumor-suppressive aspect of oncogenes and the oncogenic aspect of tumor-suppressive genes, such as those along the CCND-CDK4/6-RB axis.
    Lou X; Zhang J; Liu S; Xu N; Liao DJ
    Cell Cycle; 2014; 13(11):1677-93. PubMed ID: 24799665
    [TBL] [Abstract][Full Text] [Related]  

  • 38. TF-finder: a software package for identifying transcription factors involved in biological processes using microarray data and existing knowledge base.
    Cui X; Wang T; Chen HS; Busov V; Wei H
    BMC Bioinformatics; 2010 Aug; 11():425. PubMed ID: 20704747
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Bioinformatics analysis of microRNA comprehensive regulatory network in B- cell acute lymphoblastic leukemia].
    Zeng MN; Ma WL; Zheng WL
    Zhonghua Xue Ye Xue Za Zhi; 2016 Jul; 37(7):585-90. PubMed ID: 27535859
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Improved recovery of cell-cycle gene expression in Saccharomyces cerevisiae from regulatory interactions in multiple omics data.
    Panchy NL; Lloyd JP; Shiu SH
    BMC Genomics; 2020 Feb; 21(1):159. PubMed ID: 32054475
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.