These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 3431685)

  • 1. Plastic changes in the spontaneous activity of snail neurons under rhythmic and associated intracellular electrostimulation.
    Verbnyi YaI
    Neurosci Behav Physiol; 1987; 17(5):400-6. PubMed ID: 3431685
    [No Abstract]   [Full Text] [Related]  

  • 2. [Plastic changes in the spontaneous activity of pond snail neurons during rhythmic and associated intracellular electrostimulation].
    Verbnyĭ IaI
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1986; 36(6):1108-15. PubMed ID: 3564686
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Possible mechanisms of plastic reorganizations of neuronal activity during different schedules of intracellular electrostimulation according to the data of systems analysis.
    Verbnyi YaI ; Mogilevskii AYa
    Neurosci Behav Physiol; 1994; 24(2):209-15. PubMed ID: 8065561
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A system of electrically coupled small cells in the buccal ganglia of the pond snail Planorbis corneus.
    Berry MS
    J Exp Biol; 1972 Jun; 56(3):621-37. PubMed ID: 4668717
    [No Abstract]   [Full Text] [Related]  

  • 5. Relation between synaptic and pacemaker potentials of giant neurons in the snail.
    Arakelov GG
    Neurosci Behav Physiol; 1973; 6(3):260-70. PubMed ID: 4761765
    [No Abstract]   [Full Text] [Related]  

  • 6. [Relations between synaptic and pacemaker potentials in giant neurons of the snail Helix pomatia].
    Arakelov GG
    Zh Evol Biokhim Fiziol; 1972; 8(4):404-13. PubMed ID: 4668872
    [No Abstract]   [Full Text] [Related]  

  • 7. Control of feeding movements in the freshwater snail Planorbis corneus. I. Rhythmical neurons of buccal ganglia.
    Arshavsky YuI ; Deliagina TG; Meizerov ES; Orlovsky GN; Panchin YuV
    Exp Brain Res; 1988; 70(2):310-22. PubMed ID: 3384034
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [The multiplicity of pacemaker zones in snail neurons].
    Arakelov GG
    Neirofiziologiia; 1973; 5(1):88-94. PubMed ID: 4351654
    [No Abstract]   [Full Text] [Related]  

  • 9. Influence of serotonin and noradrenaline on response amplitude in defensive-behavior command neurons in the garden snail.
    Chistyakova MV
    Neurosci Behav Physiol; 1987; 17(6):506-10. PubMed ID: 3441282
    [No Abstract]   [Full Text] [Related]  

  • 10. [The effect of a vasopressin analog on the reaction of the command neurons in the defensive behavior of the edible snail during nerve stimulation].
    Kudriashova IV; Kruglikov RI
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1990; 40(4):754-61. PubMed ID: 2174617
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of biologically active peptides on the excitability of identifiable giant neurones of an African giant snail (Achatina fulica férussac).
    Takeuchi H; Matsumoto M; Sakai A
    Neuropharmacology; 1977 Sep; 16(9):593-602. PubMed ID: 917265
    [No Abstract]   [Full Text] [Related]  

  • 12. [Gradual action potentials of the somatic membrane of mollusc neurons].
    Sokolov EN; Grechenko TN
    Neirofiziologiia; 1974; 6(2):186-91. PubMed ID: 4829579
    [No Abstract]   [Full Text] [Related]  

  • 13. Conditioned suppression of action potential generation in an isolated snail neuron.
    Grechenko TN
    Neurosci Behav Physiol; 1986; 16(4):274-6. PubMed ID: 3796803
    [No Abstract]   [Full Text] [Related]  

  • 14. Regression analysis of the spontaneous spike activity of neurons in snail ganglia.
    Pasić M; Ristanović D; Popilijević G
    Kybernetik; 1974 Apr; 14(4):237-40. PubMed ID: 4854071
    [No Abstract]   [Full Text] [Related]  

  • 15. Influence of an analog of vasopressin on the reaction of command neurons of defensive behavior of the edible snail during the stimulation of nerves.
    Kudryashova IV; Kruglikov RI
    Neurosci Behav Physiol; 1991; 21(6):513-9. PubMed ID: 1803271
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Disorders in mollusk giant neuron action potential generation under the influence of preliminary hyperpolarization of its membrane].
    Sokolov EN; Tultaeva TS
    Neirofiziologiia; 1974; 6(1):81-9. PubMed ID: 4407187
    [No Abstract]   [Full Text] [Related]  

  • 17. [Age-related features of dynamics of the bioelectric characteristics of command neurons in edible snail].
    Kosmin AI; Adzhimolaev TA
    Fiziol Zh SSSR Im I M Sechenova; 1988 Jan; 74(1):57-63. PubMed ID: 3356268
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 1/f fluctuations in the spontaneous spike discharge intervals of a giant snail neuron.
    Musha T; Takeuchi H; Inoue T
    IEEE Trans Biomed Eng; 1983 Mar; 30(3):194-7. PubMed ID: 6862496
    [No Abstract]   [Full Text] [Related]  

  • 19. [Effect of the parameters of electrical stimuli on the endoneuronal plasticity of isolated grape snail neurons].
    Algul'ian VS; Grechenko TN; Sokolov EN
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1978; 28(4):851-3. PubMed ID: 695954
    [No Abstract]   [Full Text] [Related]  

  • 20. [The presynaptic mechanisms enhancing the reactivity of the command neurons in the defensive behavior of the edible snail against the background of the action of a vasopressin analog].
    Kudriashova IV
    Neirofiziologiia; 1990; 22(6):723-30. PubMed ID: 1965850
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.