These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 34318320)

  • 1. Carbon Fiber-Based Twisted and Coiled Artificial Muscles (TCAMs) for Powered Ankle-Foot Orthoses.
    Kotak P; Wilken JM; Anderson KM; Lamuta C
    J Biomech Eng; 2022 Jan; 144(1):. PubMed ID: 34318320
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective laser sintered versus carbon fiber passive-dynamic ankle-foot orthoses: a comparison of patient walking performance.
    Harper NG; Russell EM; Wilken JM; Neptune RR
    J Biomech Eng; 2014 Sep; 136(9):091001. PubMed ID: 24870600
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design principles, manufacturing and evaluation techniques of custom dynamic ankle-foot orthoses: a review study.
    Rogati G; Caravaggi P; Leardini A
    J Foot Ankle Res; 2022 May; 15(1):38. PubMed ID: 35585544
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Feasibility of designing, manufacturing and delivering 3D printed ankle-foot orthoses: a systematic review.
    Wojciechowski E; Chang AY; Balassone D; Ford J; Cheng TL; Little D; Menezes MP; Hogan S; Burns J
    J Foot Ankle Res; 2019; 12():11. PubMed ID: 30774718
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulated impacts of ankle foot orthoses on muscle demand and recruitment in typically-developing children and children with cerebral palsy and crouch gait.
    Rosenberg M; Steele KM
    PLoS One; 2017; 12(7):e0180219. PubMed ID: 28704464
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental comparisons of passive and powered ankle-foot orthoses in individuals with limb reconstruction.
    Russell Esposito E; Schmidtbauer KA; Wilken JM
    J Neuroeng Rehabil; 2018 Nov; 15(1):111. PubMed ID: 30463576
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative analysis and quantitative evaluation of ankle-foot orthoses for foot drop in chronic hemiparetic patients.
    Zollo L; Zaccheddu N; Ciancio AL; Morrone M; Bravi M; Santacaterina F; Laineri Milazzo M; Guglielmelli E; Sterzi S
    Eur J Phys Rehabil Med; 2015 Apr; 51(2):185-96. PubMed ID: 25184801
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental and computational analysis of composite ankle-foot orthosis.
    Zou D; He T; Dailey M; Smith KE; Silva MJ; Sinacore DR; Mueller MJ; Hastings MK
    J Rehabil Res Dev; 2014; 51(10):1525-36. PubMed ID: 25856154
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gait assessment during the initial fitting of customized selective laser sintering ankle foot orthoses in subjects with drop foot.
    Creylman V; Muraru L; Pallari J; Vertommen H; Peeraer L
    Prosthet Orthot Int; 2013 Apr; 37(2):132-8. PubMed ID: 22833516
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of solid ankle-foot orthoses with individualized ankle angles on gait for children with cerebral palsy and equinus.
    Kane KJ; Musselman KE; Lanovaz J
    J Pediatr Rehabil Med; 2020; 13(2):169-183. PubMed ID: 32444574
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The impact of orthoses on gait in children with Charcot-Marie-Tooth disease.
    Õunpuu S; Garibay E; Acsadi G; Brimacombe M; Pierz K
    Gait Posture; 2021 Mar; 85():198-204. PubMed ID: 33610823
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Additive manufacturing of specific ankle-foot orthoses for persons after stroke: A preliminary study based on gait analysis data.
    Liu Z; Zhang P; Yan M; Xie YM; Huang GZ
    Math Biosci Eng; 2019 Sep; 16(6):8134-8143. PubMed ID: 31698659
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modifying ankle foot orthosis stiffness in patients with calf muscle weakness: gait responses on group and individual level.
    Waterval NFJ; Nollet F; Harlaar J; Brehm MA
    J Neuroeng Rehabil; 2019 Oct; 16(1):120. PubMed ID: 31623670
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Energy cost optimized dorsal leaf ankle-foot-orthoses reduce impact forces on the contralateral leg in people with unilateral plantar flexor weakness.
    Waterval NFJ; Brehm MA; Harlaar J; Nollet F
    Gait Posture; 2022 Feb; 92():71-76. PubMed ID: 34826696
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ankle-foot orthoses that restrict dorsiflexion improve walking in polio survivors with calf muscle weakness.
    Ploeger HE; Bus SA; Brehm MA; Nollet F
    Gait Posture; 2014 Jul; 40(3):391-8. PubMed ID: 24947072
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gastrocnemius operating length with ankle foot orthoses in cerebral palsy.
    Choi H; Wren TAL; Steele KM
    Prosthet Orthot Int; 2017 Jun; 41(3):274-285. PubMed ID: 27613590
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stiffness modification of two ankle-foot orthosis types to optimize gait in individuals with non-spastic calf muscle weakness - a proof-of-concept study.
    Ploeger HE; Waterval NFJ; Nollet F; Bus SA; Brehm MA
    J Foot Ankle Res; 2019; 12():41. PubMed ID: 31406508
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of an ankle foot orthosis on reactive stepping in young adults.
    Twohy KE; Jackson K; Kinney A; Bigelow KE
    Gait Posture; 2021 May; 86():58-63. PubMed ID: 33684616
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of rotational speed on ankle-foot orthosis properties.
    Totah D; Barton K; Gates DH
    J Biomech; 2021 Jun; 123():110483. PubMed ID: 34023756
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of ankle foot orthosis stiffness on Achilles tendon and gastrocnemius function during unimpaired gait.
    Choi H; Peters KM; MacConnell MB; Ly KK; Eckert ES; Steele KM
    J Biomech; 2017 Nov; 64():145-152. PubMed ID: 29037441
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.