These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
376 related articles for article (PubMed ID: 34318419)
21. A balanced social LSTM for PM Shi L; Zhang H; Xu X; Han M; Zuo P Chemosphere; 2022 Mar; 291(Pt 3):133124. PubMed ID: 34861262 [TBL] [Abstract][Full Text] [Related]
22. Predicting PM2.5 concentration with enhanced state-trend awareness and uncertainty analysis using bagging and LSTM neural networks. Bian C; Huang G J Environ Qual; 2024; 53(4):441-455. PubMed ID: 38898576 [TBL] [Abstract][Full Text] [Related]
23. Research on PM2.5 Spatiotemporal Forecasting Model Based on LSTM Neural Network. Zhao F; Liang Z; Zhang Q; Seng D; Chen X Comput Intell Neurosci; 2021; 2021():1616806. PubMed ID: 34712315 [TBL] [Abstract][Full Text] [Related]
24. A hybrid deep learning technology for PM Zhang Z; Zeng Y; Yan K Environ Sci Pollut Res Int; 2021 Aug; 28(29):39409-39422. PubMed ID: 33759095 [TBL] [Abstract][Full Text] [Related]
25. A novel RF-CEEMD-LSTM model for predicting water pollution. Ruan J; Cui Y; Song Y; Mao Y Sci Rep; 2023 Nov; 13(1):20901. PubMed ID: 38017113 [TBL] [Abstract][Full Text] [Related]
26. A hybrid model for PM₂.₅ forecasting based on ensemble empirical mode decomposition and a general regression neural network. Zhou Q; Jiang H; Wang J; Zhou J Sci Total Environ; 2014 Oct; 496():264-274. PubMed ID: 25089688 [TBL] [Abstract][Full Text] [Related]
27. A Novel Hybrid Method to Predict PM Du M; Chen Y; Liu Y; Yin H Comput Intell Neurosci; 2022; 2022():7207477. PubMed ID: 36017460 [TBL] [Abstract][Full Text] [Related]
28. A novel hybrid model for six main pollutant concentrations forecasting based on improved LSTM neural networks. Xu S; Li W; Zhu Y; Xu A Sci Rep; 2022 Aug; 12(1):14434. PubMed ID: 36002466 [TBL] [Abstract][Full Text] [Related]
29. High-Precision Microscale Particulate Matter Prediction in Diverse Environments Using a Long Short-Term Memory Neural Network and Street View Imagery. Liu X; Zhang X; Wang R; Liu Y; Hadiatullah H; Xu Y; Wang T; Bendl J; Adam T; Schnelle-Kreis J; Querol X Environ Sci Technol; 2024 Feb; 58(8):3869-3882. PubMed ID: 38355131 [TBL] [Abstract][Full Text] [Related]
30. Prediction of air pollutant concentrations based on the long short-term memory neural network. Wu Z; Tian Y; Li M; Wang B; Quan Y; Liu J J Hazard Mater; 2024 Mar; 465():133099. PubMed ID: 38237434 [TBL] [Abstract][Full Text] [Related]
31. PM2.5 concentration prediction using weighted CEEMDAN and improved LSTM neural network. Zhang L; Liu J; Feng Y; Wu P; He P Environ Sci Pollut Res Int; 2023 Jun; 30(30):75104-75115. PubMed ID: 37213020 [TBL] [Abstract][Full Text] [Related]
32. A novel hybrid prediction model for PM Yang H; Zhao J; Li G Environ Sci Pollut Res Int; 2023 Mar; 30(15):44893-44913. PubMed ID: 36697990 [TBL] [Abstract][Full Text] [Related]
33. A new hybrid optimization prediction model for PM2.5 concentration considering other air pollutants and meteorological conditions. Yang H; Liu Z; Li G Chemosphere; 2022 Nov; 307(Pt 3):135798. PubMed ID: 35964719 [TBL] [Abstract][Full Text] [Related]
34. A Particulate Matter Concentration Prediction Model Based on Long Short-Term Memory and an Artificial Neural Network. Park J; Chang S Int J Environ Res Public Health; 2021 Jun; 18(13):. PubMed ID: 34202834 [TBL] [Abstract][Full Text] [Related]
35. Optimized air quality management based on air quality index prediction and air pollutants identification in representative cities in China. Guo Z; Jing X; Ling Y; Yang Y; Jing N; Yuan R; Liu Y Sci Rep; 2024 Aug; 14(1):17923. PubMed ID: 39095454 [TBL] [Abstract][Full Text] [Related]
36. A Novel Hybrid Data-Driven Model for Daily Land Surface Temperature Forecasting Using Long Short-Term Memory Neural Network Based on Ensemble Empirical Mode Decomposition. Zhang X; Zhang Q; Zhang G; Nie Z; Gui Z; Que H Int J Environ Res Public Health; 2018 May; 15(5):. PubMed ID: 29883381 [TBL] [Abstract][Full Text] [Related]
37. Prediction and assessment of the impact of COVID-19 lockdown on air quality over Kolkata: a deep transfer learning approach. Dutta D; Pal SK Environ Monit Assess; 2022 Dec; 195(1):223. PubMed ID: 36544059 [TBL] [Abstract][Full Text] [Related]
38. Forecasting PM 2.5 concentration based on integrating of CEEMDAN decomposition method with SVM and LSTM. Ameri R; Hsu CC; Band SS; Zamani M; Shu CM; Khorsandroo S Ecotoxicol Environ Saf; 2023 Nov; 266():115572. PubMed ID: 37837695 [TBL] [Abstract][Full Text] [Related]
39. Forecasting air quality time series using deep learning. Freeman BS; Taylor G; Gharabaghi B; Thé J J Air Waste Manag Assoc; 2018 Aug; 68(8):866-886. PubMed ID: 29652217 [TBL] [Abstract][Full Text] [Related]
40. Combined model of air quality index forecasting based on the combination of complementary empirical mode decomposition and sequence reconstruction. Wang W; Tang Q Environ Pollut; 2023 Jan; 316(Pt 2):120628. PubMed ID: 36370980 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]