These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 34318674)

  • 21. Combining structural and bioactivity-based fingerprints improves prediction performance and scaffold hopping capability.
    Laufkötter O; Sturm N; Bajorath J; Chen H; Engkvist O
    J Cheminform; 2019 Aug; 11(1):54. PubMed ID: 31396716
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Large-scale similarity search profiling of ChEMBL compound data sets.
    Heikamp K; Bajorath J
    J Chem Inf Model; 2011 Aug; 51(8):1831-9. PubMed ID: 21728295
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Molecular fingerprint-derived similarity measures for toxicological read-across: Recommendations for optimal use.
    Mellor CL; Marchese Robinson RL; Benigni R; Ebbrell D; Enoch SJ; Firman JW; Madden JC; Pawar G; Yang C; Cronin MTD
    Regul Toxicol Pharmacol; 2019 Feb; 101():121-134. PubMed ID: 30468762
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Anatomy of fingerprint search calculations on structurally diverse sets of active compounds.
    Godden JW; Stahura FL; Bajorath J
    J Chem Inf Model; 2005; 45(6):1812-9. PubMed ID: 16309288
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Similarity-Based Methods and Machine Learning Approaches for Target Prediction in Early Drug Discovery: Performance and Scope.
    Mathai N; Kirchmair J
    Int J Mol Sci; 2020 May; 21(10):. PubMed ID: 32438666
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biological representation of chemicals using latent target interaction profile.
    Ayed M; Lim H; Xie L
    BMC Bioinformatics; 2019 Dec; 20(Suppl 24):674. PubMed ID: 31861982
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Feature Reduction for Molecular Similarity Searching Based on Autoencoder Deep Learning.
    Nasser M; Salim N; Saeed F; Basurra S; Rabiu I; Hamza H; Alsoufi MA
    Biomolecules; 2022 Mar; 12(4):. PubMed ID: 35454097
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evaluation of different virtual screening strategies on the basis of compound sets with characteristic core distributions and dissimilarity relationships.
    Miyao T; Jasial S; Bajorath J; Funatsu K
    J Comput Aided Mol Des; 2019 Aug; 33(8):729-743. PubMed ID: 31435894
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Establishment of chromatographic fingerprint of
    Qiao Y; Liu Z; Shen A; Guo Z; Liu Y; Chen X; Xu Q; Liang X
    Se Pu; 2020 Dec; 38(12):1440-1448. PubMed ID: 34213259
    [No Abstract]   [Full Text] [Related]  

  • 30. How similar are similarity searching methods? A principal component analysis of molecular descriptor space.
    Bender A; Jenkins JL; Scheiber J; Sukuru SC; Glick M; Davies JW
    J Chem Inf Model; 2009 Jan; 49(1):108-19. PubMed ID: 19123924
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Similarity maps - a visualization strategy for molecular fingerprints and machine-learning methods.
    Riniker S; Landrum GA
    J Cheminform; 2013 Sep; 5(1):43. PubMed ID: 24063533
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Prediction of selective estrogen receptor beta agonist using open data and machine learning approach.
    Niu AQ; Xie LJ; Wang H; Zhu B; Wang SQ
    Drug Des Devel Ther; 2016; 10():2323-31. PubMed ID: 27486309
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Introduction of a generally applicable method to estimate retrieval of active molecules for similarity searching using fingerprints.
    Vogt M; Bajorath J
    ChemMedChem; 2007 Sep; 2(9):1311-20. PubMed ID: 17562536
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reduction and recombination of fingerprints of different design increase compound recall and the structural diversity of hits.
    Nisius B; Bajorath J
    Chem Biol Drug Des; 2010 Feb; 75(2):152-60. PubMed ID: 20028390
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comprehensive assessment of machine learning-based methods for predicting antimicrobial peptides.
    Xu J; Li F; Leier A; Xiang D; Shen HH; Marquez Lago TT; Li J; Yu DJ; Song J
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33774670
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Shannon entropy-based fingerprint similarity search strategy.
    Wang Y; Geppert H; Bajorath J
    J Chem Inf Model; 2009 Jul; 49(7):1687-91. PubMed ID: 19583222
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Prediction of hERG potassium channel blockage using ensemble learning methods and molecular fingerprints.
    Liu M; Zhang L; Li S; Yang T; Liu L; Zhao J; Liu H
    Toxicol Lett; 2020 Oct; 332():88-96. PubMed ID: 32629073
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A tree-based method for the rapid screening of chemical fingerprints.
    Kristensen TG; Nielsen J; Pedersen CN
    Algorithms Mol Biol; 2010 Jan; 5():9. PubMed ID: 20047665
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Profile scaling increases the similarity search performance of molecular fingerprints containing numerical descriptors and structural keys.
    Xue L; Godden JW; Stahura FL; Bajorath J
    J Chem Inf Comput Sci; 2003; 43(4):1218-25. PubMed ID: 12870914
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evaluating molecular representations in machine learning models for drug response prediction and interpretability.
    Baptista D; Correia J; Pereira B; Rocha M
    J Integr Bioinform; 2022 Sep; 19(3):. PubMed ID: 36017668
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.