BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 34318785)

  • 1. Non-invasive analysis of pancreas organoids in synthetic hydrogels defines material-cell interactions and luminal composition.
    Jung N; Moreth T; Stelzer EHK; Pampaloni F; Windbergs M
    Biomater Sci; 2021 Aug; 9(16):5415-5426. PubMed ID: 34318785
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advances in biomimetic hydrogels for organoid culture.
    Luo L; Liu L; Ding Y; Dong Y; Ma M
    Chem Commun (Camb); 2023 Aug; 59(64):9675-9686. PubMed ID: 37455615
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioactive and chemically defined hydrogels with tunable stiffness guide cerebral organoid formation and modulate multi-omics plasticity in cerebral organoids.
    Isik M; Okesola BO; Eylem CC; Kocak E; Nemutlu E; D'Este M; Mata A; Derkus B
    Acta Biomater; 2023 Nov; 171():223-238. PubMed ID: 37793600
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent advances in defined hydrogels in organoid research.
    Gan Z; Qin X; Liu H; Liu J; Qin J
    Bioact Mater; 2023 Oct; 28():386-401. PubMed ID: 37334069
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-matrigel scaffolds for organoid cultures.
    Kaur S; Kaur I; Rawal P; Tripathi DM; Vasudevan A
    Cancer Lett; 2021 Apr; 504():58-66. PubMed ID: 33582211
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Growth and differentiation of human induced pluripotent stem cell (hiPSC)-derived kidney organoids using fully synthetic peptide hydrogels.
    Treacy NJ; Clerkin S; Davis JL; Kennedy C; Miller AF; Saiani A; Wychowaniec JK; Brougham DF; Crean J
    Bioact Mater; 2023 Mar; 21():142-156. PubMed ID: 36093324
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomaterials for intestinal organoid technology and personalized disease modeling.
    Hirota A; AlMusawi S; Nateri AS; Ordóñez-Morán P; Imajo M
    Acta Biomater; 2021 Sep; 132():272-287. PubMed ID: 34023456
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Defined Alginate Hydrogels Support Spinal Cord Organoid Derivation, Maturation, and Modeling of Spinal Cord Diseases.
    Chooi WH; Ng CY; Ow V; Harley J; Ng W; Hor JH; Low KE; Malleret B; Xue K; Ng SY
    Adv Healthc Mater; 2023 Apr; 12(9):e2202342. PubMed ID: 36502337
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bovine and human endometrium-derived hydrogels support organoid culture from healthy and cancerous tissues.
    Jamaluddin MFB; Ghosh A; Ingle A; Mohammed R; Ali A; Bahrami M; Kaiko G; Gibb Z; Filipe EC; Cox TR; Boulton A; O'Sullivan R; Ius Y; Karakoti A; Vinu A; Nahar P; Jaaback K; Bansal V; Tanwar PS
    Proc Natl Acad Sci U S A; 2022 Nov; 119(44):e2208040119. PubMed ID: 36279452
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Synthetic Hydrogel, VitroGel
    Cherne MD; Sidar B; Sebrell TA; Sanchez HS; Heaton K; Kassama FJ; Roe MM; Gentry AB; Chang CB; Walk ST; Jutila M; Wilking JN; Bimczok D
    Front Pharmacol; 2021; 12():707891. PubMed ID: 34552484
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanically and chemically defined hydrogel matrices for patient-derived colorectal tumor organoid culture.
    Ng S; Tan WJ; Pek MMX; Tan MH; Kurisawa M
    Biomaterials; 2019 Oct; 219():119400. PubMed ID: 31398570
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Translational Application of Hydrogel for Organoid Technology: Challenges and Future Perspectives.
    Ma P; Chen Y; Lai X; Zheng J; Ye E; Loh XJ; Zhao Y; Parikh BH; Su X; You M; Wu YL; Li Z
    Macromol Biosci; 2021 Oct; 21(10):e2100191. PubMed ID: 34263547
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Growth of Epithelial Organoids in a Defined Hydrogel.
    Broguiere N; Isenmann L; Hirt C; Ringel T; Placzek S; Cavalli E; Ringnalda F; Villiger L; Züllig R; Lehmann R; Rogler G; Heim MH; Schüler J; Zenobi-Wong M; Schwank G
    Adv Mater; 2018 Oct; 30(43):e1801621. PubMed ID: 30203567
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Consistent and reproducible cultures of large-scale 3D mammary epithelial structures using an accessible bioprinting platform.
    Reid JA; Mollica PA; Bruno RD; Sachs PC
    Breast Cancer Res; 2018 Oct; 20(1):122. PubMed ID: 30305139
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A thermo-responsive collagen-nanocellulose hydrogel for the growth of intestinal organoids.
    Curvello R; Alves D; Abud HE; Garnier G
    Mater Sci Eng C Mater Biol Appl; 2021 May; 124():112051. PubMed ID: 33947545
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Effect of Thiol Structure on Allyl Sulfide Photodegradable Hydrogels and their Application as a Degradable Scaffold for Organoid Passaging.
    Yavitt FM; Brown TE; Hushka EA; Brown ME; Gjorevski N; Dempsey PJ; Lutolf MP; Anseth KS
    Adv Mater; 2020 Jul; 32(30):e1905366. PubMed ID: 32548863
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthetic dynamic hydrogels promote degradation-independent in vitro organogenesis.
    Chrisnandy A; Blondel D; Rezakhani S; Broguiere N; Lutolf MP
    Nat Mater; 2022 Apr; 21(4):479-487. PubMed ID: 34782747
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechano-modulatory synthetic niches for liver organoid derivation.
    Sorrentino G; Rezakhani S; Yildiz E; Nuciforo S; Heim MH; Lutolf MP; Schoonjans K
    Nat Commun; 2020 Jul; 11(1):3416. PubMed ID: 32651372
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Brain organoid formation on decellularized porcine brain ECM hydrogels.
    Simsa R; Rothenbücher T; Gürbüz H; Ghosheh N; Emneus J; Jenndahl L; Kaplan DL; Bergh N; Serrano AM; Fogelstrand P
    PLoS One; 2021; 16(1):e0245685. PubMed ID: 33507989
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In Situ Super-Resolution Imaging of Organoids and Extracellular Matrix Interactions via Phototransfer by Allyl Sulfide Exchange-Expansion Microscopy (PhASE-ExM).
    Blatchley MR; Günay KA; Yavitt FM; Hawat EM; Dempsey PJ; Anseth KS
    Adv Mater; 2022 Apr; 34(16):e2109252. PubMed ID: 35182403
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.