These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 34318831)

  • 1. Nonlinear features of Fano resonance: a QM/EM study.
    Sun J; Ding Z; Yu Y; Liang W
    Phys Chem Chem Phys; 2021 Aug; 23(30):15994-16004. PubMed ID: 34318831
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fano asymmetry in zero-detuned exciton-plasmon systems.
    Nodar Á; Neuman T; Zhang Y; Aizpurua J; Esteban R
    Opt Express; 2023 Mar; 31(6):10297-10319. PubMed ID: 37157580
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultranarrow and Tunable Fano Resonance in Ag Nanoshells and a Simple Ag Nanomatryushka.
    Gu P; Cai X; Wu G; Xue C; Chen J; Zhang Z; Yan Z; Liu F; Tang C; Du W; Huang Z; Chen Z
    Nanomaterials (Basel); 2021 Aug; 11(8):. PubMed ID: 34443870
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The vibronic absorption spectra and exciton dynamics of plasmon-exciton hybrid systems in the regimes ranged from Fano antiresonance to Rabi-like splitting.
    Zhang B; Liang W
    J Chem Phys; 2020 Jan; 152(1):014102. PubMed ID: 31914739
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strongly Asymmetric Spectroscopy in Plasmon-Exciton Hybrid Systems due to Interference-Induced Energy Repartitioning.
    Ding SJ; Li X; Nan F; Zhong YT; Zhou L; Xiao X; Wang QQ; Zhang Z
    Phys Rev Lett; 2017 Oct; 119(17):177401. PubMed ID: 29219439
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The nonlinear Fano effect.
    Kroner M; Govorov AO; Remi S; Biedermann B; Seidl S; Badolato A; Petroff PM; Zhang W; Barbour R; Gerardot BD; Warburton RJ; Karrai K
    Nature; 2008 Jan; 451(7176):311-4. PubMed ID: 18202652
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tailored Fano resonance and localized electromagnetic field enhancement in Ag gratings.
    Li Z; Klopf JM; Wang L; Yang K; Lukaszew RA
    Sci Rep; 2017 Mar; 7():44335. PubMed ID: 28290545
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Switching plasmonic Fano resonance in gold nanosphere-nanoplate heterodimers.
    Lu W; Cui X; Chow TH; Shao L; Wang H; Chen H; Wang J
    Nanoscale; 2019 May; 11(19):9641-9653. PubMed ID: 31065663
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Optical Properties of Ag-Al Nanosphere Heterodimer].
    Cheng L; Jiang YG; Huang LQ; Zhang Y; Wu J; Sun H; Liu Q; Wang J
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Nov; 36(11):3470-5. PubMed ID: 30198246
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plasmon-induced coherence, exciton-induced transparency, and Fano interference for hybrid plasmonic systems in strong coupling regime.
    Scott Z; Muhammad S; Shahbazyan TV
    J Chem Phys; 2022 May; 156(19):194702. PubMed ID: 35597643
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasmon-enhanced high order harmonic generation of open-ended finite-sized carbon nanotubes: The effects of incident field's intensity and frequency and the interference between the incident and scattered fields.
    Sun J; Ding Z; Yu Y; Liang W
    J Chem Phys; 2020 Jun; 152(22):224708. PubMed ID: 32534528
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How does the plasmonic enhancement of molecular absorption depend on the energy gap between molecular excitation and plasmon modes: a mixed TDDFT/FDTD investigation.
    Sun J; Li G; Liang W
    Phys Chem Chem Phys; 2015 Jul; 17(26):16835-45. PubMed ID: 26058430
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fano Effect and Quantum Entanglement in Hybrid Semiconductor Quantum Dot-Metal Nanoparticle System.
    He Y; Zhu KD
    Sensors (Basel); 2017 Jun; 17(6):. PubMed ID: 28632165
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unveiling the molecule-plasmon interactions in surface-enhanced infrared absorption spectroscopy.
    Yi J; You EM; Ding SY; Tian ZQ
    Natl Sci Rev; 2020 Jul; 7(7):1228-1238. PubMed ID: 34692147
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strongly coupled evenly divided disks: a new compact and tunable platform for plasmonic Fano resonances.
    Zhang S; Zhu X; Xiao W; Shi H; Wang Y; Chen Z; Chen Y; Sun K; Muskens OL; De Groot CH; Liu SD; Duan H
    Nanotechnology; 2020 Aug; 31(32):325202. PubMed ID: 32340011
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fano Interference in the Optical Absorption of an Individual Gold-Silver Nanodimer.
    Lombardi A; Grzelczak MP; Pertreux E; Crut A; Maioli P; Pastoriza-Santos I; Liz-Marzán LM; Vallée F; Del Fatti N
    Nano Lett; 2016 Oct; 16(10):6311-6316. PubMed ID: 27648834
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental demonstration of sharp Fano resonance in optical metamaterials composed of asymmetric double bars.
    Moritake Y; Kanamori Y; Hane K
    Opt Lett; 2014 Jul; 39(13):4057-60. PubMed ID: 24978806
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep Fano resonance with strong polarization dependence in gold nanoplate-nanosphere heterodimers.
    Qin F; Lai Y; Yang J; Cui X; Ma H; Wang J; Lin HQ
    Nanoscale; 2017 Sep; 9(35):13222-13234. PubMed ID: 28853475
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantum plasmonics with quantum dot-metal nanoparticle molecules: influence of the Fano effect on photon statistics.
    Ridolfo A; Di Stefano O; Fina N; Saija R; Savasta S
    Phys Rev Lett; 2010 Dec; 105(26):263601. PubMed ID: 21231659
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strong-Field Extreme-Ultraviolet Dressing of Atomic Double Excitation.
    Ott C; Aufleger L; Ding T; Rebholz M; Magunia A; Hartmann M; Stooß V; Wachs D; Birk P; Borisova GD; Meyer K; Rupprecht P; da Costa Castanheira C; Moshammer R; Attar AR; Gaumnitz T; Loh ZH; Düsterer S; Treusch R; Ullrich J; Jiang Y; Meyer M; Lambropoulos P; Pfeifer T
    Phys Rev Lett; 2019 Oct; 123(16):163201. PubMed ID: 31702368
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.