These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 34318867)
1. Superhydrophobic μ-pillars via simple and scalable SLA 3D-printing: the stair-case effect and their wetting models. Bonilla-Cruz J; Sy JAC; Lara-Ceniceros TE; Gaxiola-López JC; García V; Basilia BA; Advincula RC Soft Matter; 2021 Aug; 17(32):7524-7531. PubMed ID: 34318867 [TBL] [Abstract][Full Text] [Related]
2. Range of applicability of the Wenzel and Cassie-Baxter equations for superhydrophobic surfaces. Erbil HY; Cansoy CE Langmuir; 2009 Dec; 25(24):14135-45. PubMed ID: 19630435 [TBL] [Abstract][Full Text] [Related]
3. Superhydrophobic SLA 3D printed materials modified with nanoparticles biomimicking the hierarchical structure of a rice leaf. Barraza B; Olate-Moya F; Montecinos G; Ortega JH; Rosenkranz A; Tamburrino A; Palza H Sci Technol Adv Mater; 2022; 23(1):300-321. PubMed ID: 35557509 [TBL] [Abstract][Full Text] [Related]
5. Effect of printing direction on stress distortion of three-dimensional printed dentures using stereolithography technology. Hada T; Kanazawa M; Iwaki M; Arakida T; Minakuchi S J Mech Behav Biomed Mater; 2020 Oct; 110():103949. PubMed ID: 32957241 [TBL] [Abstract][Full Text] [Related]
6. Fabrication of Transparent and Microstructured Superhydrophobic Substrates Using Additive Manufacturing. Aldhaleai A; Tsai PA Langmuir; 2021 Jan; 37(1):348-356. PubMed ID: 33377783 [TBL] [Abstract][Full Text] [Related]
7. Effects of hydraulic pressure on the stability and transition of wetting modes of superhydrophobic surfaces. Zheng QS; Yu Y; Zhao ZH Langmuir; 2005 Dec; 21(26):12207-12. PubMed ID: 16342993 [TBL] [Abstract][Full Text] [Related]
8. 3D-Printed Bioinspired Cassie-Baxter Wettability for Controllable Microdroplet Manipulation. Yin Q; Guo Q; Wang Z; Chen Y; Duan H; Cheng P ACS Appl Mater Interfaces; 2021 Jan; 13(1):1979-1987. PubMed ID: 33351582 [TBL] [Abstract][Full Text] [Related]
9. Fabricating High-Resolution and High-Dimensional Microneedle Mold through the Resolution Improvement of Stereolithography 3D Printing. Choo S; Jin S; Jung J Pharmaceutics; 2022 Mar; 14(4):. PubMed ID: 35456599 [TBL] [Abstract][Full Text] [Related]
10. Rationalization of the behavior of solid-liquid surface free energy of water in Cassie and Wenzel wetting states on rugged solid surfaces at the nanometer scale. Leroy F; Müller-Plathe F Langmuir; 2011 Jan; 27(2):637-45. PubMed ID: 21142209 [TBL] [Abstract][Full Text] [Related]
11. Facile fabrication of micro-/nanostructured, superhydrophobic membranes with adjustable porosity by 3D printing. Mayoussi F; Doeven EH; Kick A; Goralczyk A; Thomann Y; Risch P; Guijt RM; Kotz F; Helmer D; Rapp BE J Mater Chem A Mater; 2021 Sep; 9(37):21379-21386. PubMed ID: 34603732 [TBL] [Abstract][Full Text] [Related]
12. Surface-Wetting Characteristics of DLP-Based 3D Printing Outcomes under Various Printing Conditions for Microfluidic Device Fabrication. Kang JW; Jeon J; Lee JY; Jeon JH; Hong J Micromachines (Basel); 2023 Dec; 15(1):. PubMed ID: 38258180 [TBL] [Abstract][Full Text] [Related]
13. Understanding the wettability of rough surfaces using simultaneous optical and electrochemical analysis of sessile droplets. Zahiri B; Sow PK; Kung CH; Mérida W J Colloid Interface Sci; 2017 Sep; 501():34-44. PubMed ID: 28433883 [TBL] [Abstract][Full Text] [Related]
15. Effects of geometrical characteristics of surface roughness on droplet wetting. Sheng YJ; Jiang S; Tsao HK J Chem Phys; 2007 Dec; 127(23):234704. PubMed ID: 18154406 [TBL] [Abstract][Full Text] [Related]
16. Model and experimental studies for contact angles of surfactant solutions on rough and smooth hydrophobic surfaces. Milne AJ; Elliott JA; Zabeti P; Zhou J; Amirfazli A Phys Chem Chem Phys; 2011 Sep; 13(36):16208-19. PubMed ID: 21822523 [TBL] [Abstract][Full Text] [Related]
17. Fabrication, surface properties, and origin of superoleophobicity for a model textured surface. Zhao H; Law KY; Sambhy V Langmuir; 2011 May; 27(10):5927-35. PubMed ID: 21486088 [TBL] [Abstract][Full Text] [Related]
18. Preparation of a Flexible Superhydrophobic Surface and Its Wetting Mechanism Based on Fractal Theory. Jiang G; Hu J; Chen L Langmuir; 2020 Jul; 36(29):8435-8443. PubMed ID: 32640799 [TBL] [Abstract][Full Text] [Related]
19. The role of multiscale roughness in the Lotus effect: is it essential for super-hydrophobicity? Bittoun E; Marmur A Langmuir; 2012 Oct; 28(39):13933-42. PubMed ID: 22946829 [TBL] [Abstract][Full Text] [Related]
20. Fabrication routes via projection stereolithography for 3D-printing of microfluidic geometries for nucleic acid amplification. Tzivelekis C; Sgardelis P; Waldron K; Whalley R; Huo D; Dalgarno K PLoS One; 2020; 15(10):e0240237. PubMed ID: 33112867 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]