These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 34319753)

  • 1. Airflow-Assisted Impact of Drops of Various Viscosities: The Role of Viscous Dissipation, Normal Imposed Pressure, and Shear Flow of Air.
    Singh RK; Mahato LK; Mandal DK
    Langmuir; 2021 Aug; 37(31):9504-9517. PubMed ID: 34319753
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energy Budget of Liquid Drop Impact at Maximum Spreading: Numerical Simulations and Experiments.
    Lee JB; Derome D; Dolatabadi A; Carmeliet J
    Langmuir; 2016 Feb; 32(5):1279-88. PubMed ID: 26745364
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact dynamics of oxidized liquid metal drops.
    Xu Q; Brown E; Jaeger HM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):043012. PubMed ID: 23679518
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spreading of liquid drops over porous substrates.
    Starov VM; Zhdanov SA; Kosvintsev SR; Sobolev VD; Velarde MG
    Adv Colloid Interface Sci; 2003 Jul; 104():123-58. PubMed ID: 12818493
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Airflows generated by an impacting drop.
    Bischofberger I; Ray B; Morris JF; Lee T; Nagel SR
    Soft Matter; 2016 Mar; 12(12):3013-20. PubMed ID: 26809314
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical Interpretation to the Roles of Liquid Viscosity in Droplet Spreading at Small Weber Numbers.
    Zhang Z; Zhang P
    Langmuir; 2019 Dec; 35(49):16164-16171. PubMed ID: 31718189
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Drop spreading with random viscosity.
    Xu F; Jensen OE
    Proc Math Phys Eng Sci; 2016 Oct; 472(2194):20160270. PubMed ID: 27843398
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spreading of silicone oils on glass in two geometries.
    Carré A; Woehl P
    Langmuir; 2006 Jan; 22(1):134-9. PubMed ID: 16378411
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dislodging a sessile drop by a high-Reynolds-number shear flow at subfreezing temperatures.
    Roisman IV; Criscione A; Tropea C; Mandal DK; Amirfazli A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):023007. PubMed ID: 26382503
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of surface wettability and liquid viscosity on the dynamic wetting of individual drops.
    Chen L; Bonaccurso E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):022401. PubMed ID: 25215736
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predictive Framework for the Spreading of Liquid Drops and the Formation of Liquid Marbles on Hydrophobic Particle Bed.
    Mozhi Devan Padmanathan A; Sneha Ravi A; Choudhary H; Varanakkottu SN; Dalvi SV
    Langmuir; 2019 May; 35(20):6657-6668. PubMed ID: 31039316
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thin film formation during splashing of viscous liquids.
    Driscoll MM; Stevens CS; Nagel SR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Sep; 82(3 Pt 2):036302. PubMed ID: 21230166
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Forces and stresses acting on fusion pore membrane during secretion.
    Tajparast M; Glavinović MI
    Biochim Biophys Acta; 2009 May; 1788(5):1009-23. PubMed ID: 19366587
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Drop impact on a mesh - Viscosity effect.
    Abouelsoud M; Kherbeche A; Thoraval MJ
    J Colloid Interface Sci; 2023 Oct; 648():37-45. PubMed ID: 37295368
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toward Unveiling the Anomalies Associated with the Spontaneous Spreading of Droplets.
    Debnath D; Kumar P; Mitra SK
    Langmuir; 2021 Dec; 37(51):14833-14845. PubMed ID: 34904828
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Damped Oscillatory Dynamics of a Drop Impacting over Oil-Infused Slippery Interfaces─Does the Oil Viscosity Slow it Down?
    Bandyopadhyay S; Bakli C; Mukherjee R; Chakraborty S
    Langmuir; 2023 Sep; 39(36):12826-12834. PubMed ID: 37642554
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predictive Model of Supercooled Water Droplet Pinning/Repulsion Impacting a Superhydrophobic Surface: The Role of the Gas-Liquid Interface Temperature.
    Mohammadi M; Tembely M; Dolatabadi A
    Langmuir; 2017 Feb; 33(8):1816-1825. PubMed ID: 28177630
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of drop size and viscosity on spreading dynamics in DC electrowetting.
    Hong J; Kim YK; Kang KH; Oh JM; Kang IS
    Langmuir; 2013 Jul; 29(29):9118-25. PubMed ID: 23799243
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling the Maximum Spreading of Liquid Droplets Impacting Wetting and Nonwetting Surfaces.
    Lee JB; Derome D; Guyer R; Carmeliet J
    Langmuir; 2016 Feb; 32(5):1299-308. PubMed ID: 26743317
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.