These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
300 related articles for article (PubMed ID: 34320340)
1. Dimensionality reduction by UMAP reinforces sample heterogeneity analysis in bulk transcriptomic data. Yang Y; Sun H; Zhang Y; Zhang T; Gong J; Wei Y; Duan YG; Shu M; Yang Y; Wu D; Yu D Cell Rep; 2021 Jul; 36(4):109442. PubMed ID: 34320340 [TBL] [Abstract][Full Text] [Related]
2. A cross entropy test allows quantitative statistical comparison of t-SNE and UMAP representations. Roca CP; Burton OT; Neumann J; Tareen S; Whyte CE; Gergelits V; Veiga RV; Humblet-Baron S; Liston A Cell Rep Methods; 2023 Jan; 3(1):100390. PubMed ID: 36814837 [TBL] [Abstract][Full Text] [Related]
3. Evaluation of Distance Metrics and Spatial Autocorrelation in Uniform Manifold Approximation and Projection Applied to Mass Spectrometry Imaging Data. Smets T; Verbeeck N; Claesen M; Asperger A; Griffioen G; Tousseyn T; Waelput W; Waelkens E; De Moor B Anal Chem; 2019 May; 91(9):5706-5714. PubMed ID: 30986042 [TBL] [Abstract][Full Text] [Related]
4. Capturing discrete latent structures: choose LDs over PCs. Alexander TA; Irizarry RA; Bravo HC Biostatistics; 2022 Dec; 24(1):1-16. PubMed ID: 34467372 [TBL] [Abstract][Full Text] [Related]
5. UMAP as a Dimensionality Reduction Tool for Molecular Dynamics Simulations of Biomacromolecules: A Comparison Study. Trozzi F; Wang X; Tao P J Phys Chem B; 2021 May; 125(19):5022-5034. PubMed ID: 33973773 [TBL] [Abstract][Full Text] [Related]
7. DGCyTOF: Deep learning with graphic cluster visualization to predict cell types of single cell mass cytometry data. Cheng L; Karkhanis P; Gokbag B; Liu Y; Li L PLoS Comput Biol; 2022 Apr; 18(4):e1008885. PubMed ID: 35404970 [TBL] [Abstract][Full Text] [Related]
8. Visualizing Single-Cell RNA-seq Data with Semisupervised Principal Component Analysis. Liu Z Int J Mol Sci; 2020 Aug; 21(16):. PubMed ID: 32806757 [TBL] [Abstract][Full Text] [Related]
9. Preprocessing of Single Cell RNA Sequencing Data Using Correlated Clustering and Projection. Hozumi Y; Tanemura KA; Wei GW J Chem Inf Model; 2024 Apr; 64(7):2829-2838. PubMed ID: 37402705 [TBL] [Abstract][Full Text] [Related]
10. The application of Uniform Manifold Approximation and Projection (UMAP) for unconstrained ordination and classification of biological indicators in aquatic ecology. Milošević D; Medeiros AS; Stojković Piperac M; Cvijanović D; Soininen J; Milosavljević A; Predić B Sci Total Environ; 2022 Apr; 815():152365. PubMed ID: 34963591 [TBL] [Abstract][Full Text] [Related]
11. Assessing single-cell transcriptomic variability through density-preserving data visualization. Narayan A; Berger B; Cho H Nat Biotechnol; 2021 Jun; 39(6):765-774. PubMed ID: 33462509 [TBL] [Abstract][Full Text] [Related]
12. Performance comparison of dimensionality reduction methods on RNA-Seq data from the GTEx project. Seok HS Genes Genomics; 2020 Feb; 42(2):225-234. PubMed ID: 31833048 [TBL] [Abstract][Full Text] [Related]
13. Statistical method scDEED for detecting dubious 2D single-cell embeddings and optimizing t-SNE and UMAP hyperparameters. Xia L; Lee C; Li JJ Nat Commun; 2024 Feb; 15(1):1753. PubMed ID: 38409103 [TBL] [Abstract][Full Text] [Related]
14. Fuzzy Information Discrimination Measures and Their Application to Low Dimensional Embedding Construction in the UMAP Algorithm. Demidova LA; Gorchakov AV J Imaging; 2022 Apr; 8(4):. PubMed ID: 35448241 [TBL] [Abstract][Full Text] [Related]