BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 34320364)

  • 41. The role of lysine acetylation in the function of mitochondrial ribosomal protein L12.
    Paluch KV; Platz KR; Rudisel EJ; Erdmann RR; Laurin TR; Dittenhafer-Reed KE
    Proteins; 2024 May; 92(5):583-592. PubMed ID: 38146092
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Bromodomain factor 5 is an essential regulator of transcription in Leishmania.
    Jones NG; Geoghegan V; Moore G; Carnielli JBT; Newling K; Calderón F; Gabarró R; Martín J; Prinjha RK; Rioja I; Wilkinson AJ; Mottram JC
    Nat Commun; 2022 Jul; 13(1):4071. PubMed ID: 35831302
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The regulatory enzymes and protein substrates for the lysine β-hydroxybutyrylation pathway.
    Huang H; Zhang D; Weng Y; Delaney K; Tang Z; Yan C; Qi S; Peng C; Cole PA; Roeder RG; Zhao Y
    Sci Adv; 2021 Feb; 7(9):. PubMed ID: 33627428
    [TBL] [Abstract][Full Text] [Related]  

  • 44. YEATS Domains as Novel Epigenetic Readers: Structures, Functions, and Inhibitor Development.
    Li X; Liu S; Li X; Li XD
    ACS Chem Biol; 2023 Apr; 18(4):994-1013. PubMed ID: 35041380
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Crotonylation and disease: Current progress and future perspectives.
    Yang P; Qin Y; Zeng L; He Y; Xie Y; Cheng X; Huang W; Cao L
    Biomed Pharmacother; 2023 Sep; 165():115108. PubMed ID: 37392654
    [TBL] [Abstract][Full Text] [Related]  

  • 46. lncRNA DIGIT and BRD3 protein form phase-separated condensates to regulate endoderm differentiation.
    Daneshvar K; Ardehali MB; Klein IA; Hsieh FK; Kratkiewicz AJ; Mahpour A; Cancelliere SOL; Zhou C; Cook BM; Li W; Pondick JV; Gupta SK; Moran SP; Young RA; Kingston RE; Mullen AC
    Nat Cell Biol; 2020 Oct; 22(10):1211-1222. PubMed ID: 32895492
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Reading and erasing of histone crotonyllysine mimics by the AF9 YEATS domain and SIRT2 deacylase.
    Bilgin N; Türkmen VA; Hammami N; Christensen NR; Hintzen JCJ; Mecinović J
    Bioorg Med Chem; 2023 Nov; 95():117500. PubMed ID: 37839329
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Linking chromatin acylation mark-defined proteome and genome in living cells.
    Qin F; Li B; Wang H; Ma S; Li J; Liu S; Kong L; Zheng H; Zhu R; Han Y; Yang M; Li K; Ji X; Chen PR
    Cell; 2023 Mar; 186(5):1066-1085.e36. PubMed ID: 36868209
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Novel post-translational modifications in the kidneys for human health and diseases.
    Xiang T; Zhao S; Wu Y; Li L; Fu P; Ma L
    Life Sci; 2022 Dec; 311(Pt B):121188. PubMed ID: 36375568
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Does chromatin function as a metabolite reservoir?
    Nirello VD; Rodrigues de Paula D; Araújo NVP; Varga-Weisz PD
    Trends Biochem Sci; 2022 Sep; 47(9):732-735. PubMed ID: 35418348
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Acylation of Biomolecules in Prokaryotes: a Widespread Strategy for the Control of Biological Function and Metabolic Stress.
    Hentchel KL; Escalante-Semerena JC
    Microbiol Mol Biol Rev; 2015 Sep; 79(3):321-46. PubMed ID: 26179745
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Characterization of diverse lysine acylations in Bacillus thuringiensis: Substrate profiling and functional exploration.
    Liu T; Zhang M; Fan Y; Zhao L; Huang D; Zhao L; Tan M; Ye BC; Xu JY
    Proteomics; 2024 Mar; ():e2300350. PubMed ID: 38491406
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Protein Post-Translational Modifications Based on Proteomics: A Potential Regulatory Role in Animal Science.
    Fan S; Kong C; Zhou R; Zheng X; Ren D; Yin Z
    J Agric Food Chem; 2024 Mar; 72(12):6077-6088. PubMed ID: 38501450
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Evolved, Selective Erasers of Distinct Lysine Acylations.
    Spinck M; Neumann-Staubitz P; Ecke M; Gasper R; Neumann H
    Angew Chem Int Ed Engl; 2020 Jun; 59(27):11142-11149. PubMed ID: 32187803
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Discovery of Itaconate-Mediated Lysine Acylation.
    Liu D; Xiao W; Li H; Zhang Y; Yuan S; Li C; Dong S; Wang C
    J Am Chem Soc; 2023 Jun; 145(23):12673-12681. PubMed ID: 37271942
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Functions and mechanisms of protein lysine butyrylation (Kbu): Therapeutic implications in human diseases.
    Xue Q; Yang Y; Li H; Li X; Zou L; Li T; Ma H; Qi H; Wang J; Yu T
    Genes Dis; 2023 Nov; 10(6):2479-2490. PubMed ID: 37554202
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Lysine metabolism at the nexus of crotonylation and tumor immunity.
    Wei F; Locasale JW
    Cell Res; 2023 Nov; 33(11):813-814. PubMed ID: 37380809
    [No Abstract]   [Full Text] [Related]  

  • 58. Acylations in cardiovascular diseases: advances and perspectives.
    Chen X; Deng C; Wang H; Tang X
    Chin Med J (Engl); 2022 Jul; 135(13):1525-7. PubMed ID: 35861291
    [No Abstract]   [Full Text] [Related]  

  • 59. Ketogenesis impact on liver metabolism revealed by proteomics of lysine β-hydroxybutyrylation.
    Koronowski KB; Greco CM; Huang H; Kim JK; Fribourgh JL; Crosby P; Mathur L; Ren X; Partch CL; Jang C; Qiao F; Zhao Y; Sassone-Corsi P
    Cell Rep; 2021 Aug; 36(5):109487. PubMed ID: 34348140
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Histone crotonylation regulates neural stem cell fate decisions by activating bivalent promoters.
    Dai SK; Liu PP; Du HZ; Liu X; Xu YJ; Liu C; Wang YY; Teng ZQ; Liu CM
    EMBO Rep; 2021 Oct; 22(10):e52023. PubMed ID: 34369651
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.