BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 34320484)

  • 1. Selective controlling transverse plasmon spectrum of pentagonal gold nanotube: from visible to near-infrared region.
    Liu YL; Zhu J; Weng GJ; Li JJ; Zhao JW
    Nanotechnology; 2021 Aug; 32(44):. PubMed ID: 34320484
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theoretical simulation of nonlinear regulation of wall thickness dependent longitudinal surface plasmon in pentagonal gold nanotubes.
    Liu YL; Zhu J; Weng GJ; Li JJ; Zhao JW
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 May; 273():121037. PubMed ID: 35189490
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ellipsoidal core-shell dielectric-gold nanostructure: theoretical study of the tunable surface plasmon resonance.
    Zhu J
    J Nanosci Nanotechnol; 2007 Mar; 7(3):1059-64. PubMed ID: 17450875
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Effect of Local Electric Field in the Middle Dielectric Wall on the Infrared Plasmonic Shift of the Concentric Gold Double Nanotubes.
    Zhenji L; Shaoyan G
    J Nanosci Nanotechnol; 2015 Feb; 15(2):1815-20. PubMed ID: 26353737
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fano-like resonance in symmetry-broken gold nanotube dimer.
    Wu D; Jiang S; Cheng Y; Liu X
    Opt Express; 2012 Nov; 20(24):26559-67. PubMed ID: 23187511
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model.
    Jain PK; Eustis S; El-Sayed MA
    J Phys Chem B; 2006 Sep; 110(37):18243-53. PubMed ID: 16970442
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interband π plasmon of graphene: strong small-size and field-enhancement effects.
    Hu J; Zeng H; Wang C; Li Z; Kan C; Liu Y
    Phys Chem Chem Phys; 2014 Nov; 16(42):23483-91. PubMed ID: 25269556
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tuning localized transverse surface plasmon resonance in electricity-selected single-wall carbon nanotubes by electrochemical doping.
    Igarashi T; Kawai H; Yanagi K; Cuong NT; Okada S; Pichler T
    Phys Rev Lett; 2015 May; 114(17):176807. PubMed ID: 25978253
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasmonic coupling in gold nanoring dimers: observation of coupled bonding mode.
    Tsai CY; Lin JW; Wu CY; Lin PT; Lu TW; Lee PT
    Nano Lett; 2012 Mar; 12(3):1648-54. PubMed ID: 22321005
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calculated thickness dependent plasmonic properties of gold nanobars in the visible to near-infrared light regime.
    Ghosh PK; Debu DT; French DA; Herzog JB
    PLoS One; 2017; 12(5):e0177463. PubMed ID: 28486554
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasmon coupling between complex gold nanostructures and a dielectric substrate.
    Fathi ZR; Menguc MP; Erturk H
    Appl Opt; 2018 Oct; 57(30):8954-8963. PubMed ID: 30461882
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SERS Properties of Gold Nanorods at Resonance with Molecular, Transverse, and Longitudinal Plasmon Excitations.
    Ros I; Placido T; Amendola V; Marinzi C; Manfredi N; Comparelli R; Striccoli M; Agostiano A; Abbotto A; Pedron D; Pilot R; Bozio R
    Plasmonics; 2014; 9(3):581-593. PubMed ID: 24834019
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dipole-dipole plasmon interactions in gold-on-polystyrene composites.
    Peceros KE; Xu X; Bulcock SR; Cortie MB
    J Phys Chem B; 2005 Nov; 109(46):21516-20. PubMed ID: 16853793
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Simulation of the medium dielectric constant dependent optical properties for gold nanorods].
    Zhu J; Wang YC
    Guang Pu Xue Yu Guang Pu Fen Xi; 2005 Jun; 25(6):916-9. PubMed ID: 16201371
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Widely tunable surface plasmon resonance and uniquely superior SERS performance of Au nanotube network films.
    Lin Y; Wang L; Zhang H; Wu L; Fan H; Liu X; Zheng R; Tian X; He H
    Nanotechnology; 2021 Apr; 32(29):. PubMed ID: 33823499
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Double optical limiting in gold nanoshell: tuning from visible to infrared region by shell thickness.
    Zhu J
    Appl Opt; 2008 Nov; 47(31):5848-52. PubMed ID: 19122726
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insight on the Coupling of Plasmonic Nanoparticles from Near-Field Spectra Determined via Discrete Dipole Approximations.
    Barr JW; Gomrok S; Chaffin E; Huang X; Wang Y
    J Phys Chem C Nanomater Interfaces; 2021 Mar; 125(9):5260-5268. PubMed ID: 34367408
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Localized surface plasmon resonance in arrays of nano-gold cylinders: inverse problem and propagation of uncertainties.
    Barchiesi D; Kessentini S; Guillot N; de la Chapelle ML; Grosges T
    Opt Express; 2013 Jan; 21(2):2245-62. PubMed ID: 23389205
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gold nanoframes: very high surface plasmon fields and excellent near-infrared sensors.
    Mahmoud MA; El-Sayed MA
    J Am Chem Soc; 2010 Sep; 132(36):12704-10. PubMed ID: 20722373
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasmon resonance spectroscopy of gold-in-gallium oxide peapod and core/shell nanowires.
    Wu YJ; Hsieh CH; Chen PH; Li JY; Chou LJ; Chen LJ
    ACS Nano; 2010 Mar; 4(3):1393-8. PubMed ID: 20148595
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.