These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 34320736)

  • 1. Hypersaline microbial fuel cell equipped with an oxygen-reducing microbial cathode.
    Rimboud M; Etcheverry L; Barakat M; Achouak W; Bergel A; Délia ML
    Bioresour Technol; 2021 Oct; 337():125448. PubMed ID: 34320736
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxygen-reducing microbial cathodes in hypersaline electrolyte.
    Rimboud M; Barakat M; Achouak W; Bergel A; Délia ML
    Bioresour Technol; 2021 Jan; 319():124165. PubMed ID: 33039843
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane.
    Liu H; Logan BE
    Environ Sci Technol; 2004 Jul; 38(14):4040-6. PubMed ID: 15298217
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Long-term operation of bio-catalyzed cathodes within continuous flow membrane-less microbial fuel cells.
    Chang CC; Li SL; Hu A; Yu CP
    Chemosphere; 2021 Mar; 266():129059. PubMed ID: 33250234
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cathode performance as a factor in electricity generation in microbial fuel cells.
    Oh S; Min B; Logan BE
    Environ Sci Technol; 2004 Sep; 38(18):4900-4. PubMed ID: 15487802
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxygen-reducing biocathodes operating with passive oxygen transfer in microbial fuel cells.
    Xia X; Tokash JC; Zhang F; Liang P; Huang X; Logan BE
    Environ Sci Technol; 2013 Feb; 47(4):2085-91. PubMed ID: 23360098
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cathode potential and mass transfer determine performance of oxygen reducing biocathodes in microbial fuel cells.
    Ter Heijne A; Strik DP; Hamelers HV; Buisman CJ
    Environ Sci Technol; 2010 Sep; 44(18):7151-6. PubMed ID: 20715764
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tubular membrane cathodes for scalable power generation in microbial fuel cells.
    Zuo Y; Cheng S; Call D; Logan BE
    Environ Sci Technol; 2007 May; 41(9):3347-53. PubMed ID: 17539548
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stability characterization and modeling of robust distributed benthic microbial fuel cell (DBMFC) system.
    Karra U; Huang G; Umaz R; Tenaglier C; Wang L; Li B
    Bioresour Technol; 2013 Sep; 144():477-84. PubMed ID: 23890975
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of microbial growth on air cathodes of single chamber microbial fuel cells by incorporating enrofloxacin into the catalyst layer.
    Liu W; Cheng S; Sun D; Huang H; Chen J; Cen K
    Biosens Bioelectron; 2015 Oct; 72():44-50. PubMed ID: 25957076
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electricity generation by microbial fuel cell using microorganisms as catalyst in cathode.
    Jang JK; Kan J; Bretschger O; Gorby YA; Hsu L; Kim BH; Nealson KH
    J Microbiol Biotechnol; 2013 Dec; 23(12):1765-73. PubMed ID: 24225369
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Performance and microbial ecology of air-cathode microbial fuel cells with layered electrode assemblies.
    Butler CS; Nerenberg R
    Appl Microbiol Biotechnol; 2010 May; 86(5):1399-408. PubMed ID: 20098985
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis and study of CuNiTiO
    Rezaei A; Aber S; Roberts DJ; Javid Ga A
    Chemosphere; 2022 Nov; 307(Pt 1):135709. PubMed ID: 35843431
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sustainable bioelectricity generation using Cladophora sp. as a biocathode in membrane-less microbial fuel cell.
    Taşkan B; Taşkan E
    Bioresour Technol; 2022 Mar; 347():126704. PubMed ID: 35031436
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficacy of electrode position in microbial fuel cell for simultaneous Cr(VI) reduction and bioelectricity production.
    Zhou J; Li M; Zhou W; Hu J; Long Y; Tsang YF; Zhou S
    Sci Total Environ; 2020 Dec; 748():141425. PubMed ID: 32798878
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells.
    Logan B; Cheng S; Watson V; Estadt G
    Environ Sci Technol; 2007 May; 41(9):3341-6. PubMed ID: 17539547
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electricity generation from cysteine in a microbial fuel cell.
    Logan BE; Murano C; Scott K; Gray ND; Head IM
    Water Res; 2005 Mar; 39(5):942-52. PubMed ID: 15743641
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Performance of Electricity Generation and Feasibility of Discontinuous Power Supply of MFC by Using Pretreated Excess Sludge as Fuel].
    Zhao YH; Zhao YG; Guo L
    Huan Jing Ke Xue; 2016 Mar; 37(3):1156-62. PubMed ID: 27337913
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-Performance Carbon Aerogel Air Cathodes for Microbial Fuel Cells.
    Zhang X; He W; Zhang R; Wang Q; Liang P; Huang X; Logan BE; Fellinger TP
    ChemSusChem; 2016 Oct; 9(19):2788-2795. PubMed ID: 27509893
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of cathodic electron acceptor on microbial fuel cell internal resistance.
    Lawson K; Rossi R; Regan JM; Logan BE
    Bioresour Technol; 2020 Nov; 316():123919. PubMed ID: 32771939
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.