These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 34320738)

  • 21. A comparative adsorption study with different industrial wastes as adsorbents for the removal of cationic dyes from water.
    Bhatnagar A; Jain AK
    J Colloid Interface Sci; 2005 Jan; 281(1):49-55. PubMed ID: 15567379
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Methylphenols removal from water by low-cost adsorbents.
    Jain AK; Suhas ; Bhatnagar A
    J Colloid Interface Sci; 2002 Jul; 251(1):39-45. PubMed ID: 16802460
    [TBL] [Abstract][Full Text] [Related]  

  • 23. How Well Do Our Adsorbents Actually Perform?-The Case of Dimethoate Removal Using Viscose Fiber-Derived Carbons.
    Anićijević V; Tasić T; Milanković V; Breitenbach S; Unterweger C; Fürst C; Bajuk-Bogdanović D; Pašti IA; Lazarević-Pašti T
    Int J Environ Res Public Health; 2023 Mar; 20(5):. PubMed ID: 36901562
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Performance of CO
    Cha JS; Jang SH; Lam SS; Kim H; Kim YM; Jeon BH; Park YK
    Chemosphere; 2021 Sep; 279():130521. PubMed ID: 33866093
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Analysis and comparison of inertinite-derived adsorbent with conventional adsorbents.
    Gangupomu RH; Kositkanawuth K; Sattler ML; Ramirez D; Dennis BH; MacDonnell FM; Billo R; Priest JW
    J Air Waste Manag Assoc; 2012 May; 62(5):489-99. PubMed ID: 22696799
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effective removal of heavy metals from water using porous lignin-based adsorbents.
    Wang X; Li X; Peng L; Han S; Hao C; Jiang C; Wang H; Fan X
    Chemosphere; 2021 Sep; 279():130504. PubMed ID: 33892455
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Lignin-based magnetic activated carbon for p-arsanilic acid removal: Applications and absorption mechanisms.
    Wu Q; Ye X; Lv Y; Pei R; Wu M; Liu M
    Chemosphere; 2020 Nov; 258():127276. PubMed ID: 32947657
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In situ adsorption-catalysis system for the removal of o-xylene over an activated carbon supported Pd catalyst.
    Huang S; Zhang C; He H
    J Environ Sci (China); 2009; 21(7):985-90. PubMed ID: 19862967
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Preparation of a Novel Lignin Nanosphere Adsorbent for Enhancing Adsorption of Lead.
    Liu C; Li Y; Hou Y
    Molecules; 2019 Jul; 24(15):. PubMed ID: 31349562
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Boosted selectivity and enhanced capacity of As(V) removal from polluted water by triethylenetetramine activated lignin-based adsorbents.
    Huang C; Shi X; Wang C; Guo L; Dong M; Hu G; Lin J; Ding T; Guo Z
    Int J Biol Macromol; 2019 Nov; 140():1167-1174. PubMed ID: 31472208
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High-efficiency removal of benzene vapor using activated carbon from Althaea officinalis L. biomass as a lignocellulosic precursor.
    Isinkaralar K
    Environ Sci Pollut Res Int; 2022 Sep; 29(44):66728-66740. PubMed ID: 35507228
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Industrial alkali lignin-derived biochar as highly efficient and low-cost adsorption material for Pb(II) from aquatic environment.
    Wu F; Chen L; Hu P; Wang Y; Deng J; Mi B
    Bioresour Technol; 2021 Feb; 322():124539. PubMed ID: 33340951
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Removal of 2-fluoro and 2-iodophenol from aqueous solutions using industrial wastes.
    Jain AK; Suhas ; Jain S; Bhatnagar A
    Environ Technol; 2004 Jan; 25(1):15-22. PubMed ID: 15027646
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A lignin-biochar with high oxygen-containing groups for adsorbing lead ion prepared by simultaneous oxidization and carbonization.
    Li Y; Wang F; Miao Y; Mai Y; Li H; Chen X; Chen J
    Bioresour Technol; 2020 Jul; 307():123165. PubMed ID: 32203865
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Catalytic hydrothermal liquefaction of alkali lignin over activated bio-char supported bimetallic catalyst.
    Biswas B; Kumar A; Kaur R; Krishna BB; Bhaskar T
    Bioresour Technol; 2021 Oct; 337():125439. PubMed ID: 34320735
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Improving the adsorption performance of non-polar benzene vapor by using lignin-based activated carbon.
    Isinkaralar K
    Environ Sci Pollut Res Int; 2023 Oct; 30(50):108706-108719. PubMed ID: 37752402
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Lignin--from natural adsorbent to activated carbon: a review.
    Suhas ; Carrott PJ; Ribeiro Carrott MM
    Bioresour Technol; 2007 Sep; 98(12):2301-12. PubMed ID: 17055259
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fundamental adsorption characteristics of carbonaceous adsorbents for 1,2,3,4-tetrachlorobenzene in a model gas of an incineration plant.
    Inoue K; Kawamoto K
    Environ Sci Technol; 2005 Aug; 39(15):5844-50. PubMed ID: 16124324
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Lignocellulose-based adsorbents: A spotlight review of the effective parameters on carbon dioxide capture process.
    Rouzitalab Z; Maklavany DM; Jafarinejad S; Rashidi A
    Chemosphere; 2020 May; 246():125756. PubMed ID: 31918088
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Porous Activated Carbon from Lignocellulosic Agricultural Waste for the Removal of Acetampirid Pesticide from Aqueous Solutions.
    Mohammad SG; Ahmed SM; Amr AEE; Kamel AH
    Molecules; 2020 May; 25(10):. PubMed ID: 32429511
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.