These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 34320759)

  • 1. Chemoenzymatic valorization of agricultural wastes into 4-hydroxyvaleric acid via levulinic acid.
    Moon M; Yeon YJ; Park HJ; Park J; Park GW; Kim GH; Lee JP; Lee D; Lee JS; Min K
    Bioresour Technol; 2021 Oct; 337():125479. PubMed ID: 34320759
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enzymatic reduction of levulinic acid by engineering the substrate specificity of 3-hydroxybutyrate dehydrogenase.
    Yeon YJ; Park HY; Yoo YJ
    Bioresour Technol; 2013 Apr; 134():377-80. PubMed ID: 23489571
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering substrate specificity of succinic semialdehyde reductase (AKR7A5) for efficient conversion of levulinic acid to 4-hydroxyvaleric acid.
    Yeon YJ; Park HY; Yoo YJ
    J Biotechnol; 2015 Sep; 210():38-43. PubMed ID: 26113216
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Valorization of thermochemical conversion of lipid-extracted microalgae to levulinic acid.
    Jeong GT; Kim SK
    Bioresour Technol; 2020 Oct; 313():123684. PubMed ID: 32562965
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microbial and enzymatic conversion of levulinic acid, an alternative building block to fermentable sugars from cellulosic biomass.
    Habe H; Sato Y; Kirimura K
    Appl Microbiol Biotechnol; 2020 Sep; 104(18):7767-7775. PubMed ID: 32770274
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-Level Production of 4-Hydroxyvalerate from Levulinic Acid via Whole-Cell Biotransformation Decoupled from Cell Metabolism.
    Kim D; Sathesh-Prabu C; JooYeon Y; Lee SK
    J Agric Food Chem; 2019 Sep; 67(38):10678-10684. PubMed ID: 31475535
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of bioprocess for corncob-derived levulinic acid production.
    Lee JP; Lee J; Min K
    Bioresour Technol; 2023 Mar; 371():128628. PubMed ID: 36646357
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Substrate-inducible and antibiotic-free high-level 4-hydroxyvaleric acid production in engineered
    Sathesh-Prabu C; Tiwari R; Lee SK
    Front Bioeng Biotechnol; 2022; 10():960907. PubMed ID: 36017349
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integrated two-stage chemically processing of rice straw cellulose to butyl levulinate.
    Elumalai S; Agarwal B; Runge TM; Sangwan RS
    Carbohydr Polym; 2016 Oct; 150():286-98. PubMed ID: 27312640
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Homogeneous Catalyzed Reactions of Levulinic Acid: To γ-Valerolactone and Beyond.
    Omoruyi U; Page S; Hallett J; Miller PW
    ChemSusChem; 2016 Aug; 9(16):2037-47. PubMed ID: 27464831
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microwave-assisted one-pot conversion of agro-industrial wastes into levulinic acid: An alternate approach.
    Maiti S; Gallastegui G; Suresh G; Pachapur VL; Brar SK; Le Bihan Y; Drogui P; Buelna G; Verma M; Galvez-Cloutier R
    Bioresour Technol; 2018 Oct; 265():471-479. PubMed ID: 29936351
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Catalytic Production of Levulinic Acid (LA) from Actual Biomass.
    Signoretto M; Taghavi S; Ghedini E; Menegazzo F
    Molecules; 2019 Jul; 24(15):. PubMed ID: 31366018
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomass derived efficient conversion of levulinic acid for sustainable production of γ-valerolactone over cobalt based catalyst.
    Barla MK; Velagala RR; Minpoor S; Madduluri VR; Srinivasu P
    J Hazard Mater; 2021 Mar; 405():123335. PubMed ID: 33317894
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MoO
    Wang L; Yang Y; Yin P; Ren Z; Liu W; Tian Z; Zhang Y; Xu E; Yin J; Wei M
    ACS Appl Mater Interfaces; 2021 Jul; 13(27):31799-31807. PubMed ID: 34197068
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved levulinic acid production from agri-residue biomass in biphasic solvent system through synergistic catalytic effect of acid and products.
    Kumar S; Ahluwalia V; Kundu P; Sangwan RS; Kansal SK; Runge TM; Elumalai S
    Bioresour Technol; 2018 Mar; 251():143-150. PubMed ID: 29274853
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conversion of Biomass to Organic Acids by Liquefaction Reactions Under Subcritical Conditions.
    Yüksel Özşen A
    Front Chem; 2020; 8():24. PubMed ID: 32117866
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of green solvent on levulinic acid production from lignocellulosic paper waste.
    Dutta S; Yu IKM; Tsang DCW; Su Z; Hu C; Wu KCW; Yip ACK; Ok YS; Poon CS
    Bioresour Technol; 2020 Feb; 298():122544. PubMed ID: 31838242
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enzymatic Pretreatment Coupled with the Addition of p-Hydroxyanisole Increased Levulinic Acid Production from Steam-Exploded Rice Straw Short Fiber.
    Ma LT; Zhao ZM; Yu B; Chen HZ
    Appl Biochem Biotechnol; 2016 Nov; 180(5):945-953. PubMed ID: 27220515
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering the lva operon and Optimization of Culture Conditions for Enhanced Production of 4-Hydroxyvalerate from Levulinic Acid in Pseudomonas putida KT2440.
    Sathesh-Prabu C; Lee SK
    J Agric Food Chem; 2019 Mar; 67(9):2540-2546. PubMed ID: 30773878
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Complementation of reducing power for 5-hydroxyvaleric acid and 1,5-pentanediol production via glucose dehydrogenase in Escherichia coli whole-cell system.
    Kim B; Oh SJ; Hwang JH; Kim HJ; Shin N; Joo JC; Choi KY; Park SH; Park K; Bhatia SK; Yang YH
    Enzyme Microb Technol; 2023 Oct; 170():110305. PubMed ID: 37595400
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.