These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 34320764)

  • 1. Autotrophic (C
    Arslan K; Veiga MC; Kennes C
    Bioresour Technol; 2021 Oct; 337():125485. PubMed ID: 34320764
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solventogenesis in Clostridium aceticum producing high concentrations of ethanol from syngas.
    Arslan K; Bayar B; Nalakath Abubackar H; Veiga MC; Kennes C
    Bioresour Technol; 2019 Nov; 292():121941. PubMed ID: 31401358
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient butanol-ethanol (B-E) production from carbon monoxide fermentation by Clostridium carboxidivorans.
    Fernández-Naveira Á; Abubackar HN; Veiga MC; Kennes C
    Appl Microbiol Biotechnol; 2016 Apr; 100(7):3361-70. PubMed ID: 26810079
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbon monoxide conversion with Clostridium aceticum.
    Mayer A; Schädler T; Trunz S; Stelzer T; Weuster-Botz D
    Biotechnol Bioeng; 2018 Nov; 115(11):2740-2750. PubMed ID: 30063246
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbon monoxide fermentation to ethanol by Clostridium autoethanogenum in a bioreactor with no accumulation of acetic acid.
    Abubackar HN; Veiga MC; Kennes C
    Bioresour Technol; 2015 Jun; 186():122-127. PubMed ID: 25812815
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced solventogenesis in syngas bioconversion: Role of process parameters and thermodynamics.
    He Y; Kennes C; Lens PNL
    Chemosphere; 2022 Jul; 299():134425. PubMed ID: 35351479
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ethanol and acetic acid production from carbon monoxide in a Clostridium strain in batch and continuous gas-fed bioreactors.
    Abubackar HN; Veiga MC; Kennes C
    Int J Environ Res Public Health; 2015 Jan; 12(1):1029-43. PubMed ID: 25608591
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reaction engineering analysis of the autotrophic energy metabolism of Clostridium aceticum.
    Mayer A; Weuster-Botz D
    FEMS Microbiol Lett; 2017 Dec; 364(22):. PubMed ID: 29069379
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insights into CO2 Fixation Pathway of Clostridium autoethanogenum by Targeted Mutagenesis.
    Liew F; Henstra AM; Winzer K; Köpke M; Simpson SD; Minton NP
    mBio; 2016 May; 7(3):. PubMed ID: 27222467
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of Clostridium ljungdahlii OTA1: a non-autotrophic hyper ethanol-producing strain.
    Whitham JM; Schulte MJ; Bobay BG; Bruno-Barcena JM; Chinn MS; Flickinger MC; Pawlak JJ; Grunden AM
    Appl Microbiol Biotechnol; 2017 Feb; 101(4):1615-1630. PubMed ID: 27866253
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A study of CO/syngas bioconversion by Clostridium autoethanogenum with a flexible gas-cultivation system.
    Xu H; Liang C; Yuan Z; Xu J; Hua Q; Guo Y
    Enzyme Microb Technol; 2017 Jun; 101():24-29. PubMed ID: 28433187
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physiological response of Clostridium carboxidivorans during conversion of synthesis gas to solvents in a gas-fed bioreactor.
    Ukpong MN; Atiyeh HK; De Lorme MJ; Liu K; Zhu X; Tanner RS; Wilkins MR; Stevenson BS
    Biotechnol Bioeng; 2012 Nov; 109(11):2720-8. PubMed ID: 22566280
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ethanol Metabolism Dynamics in Clostridium ljungdahlii Grown on Carbon Monoxide.
    Liu ZY; Jia DC; Zhang KD; Zhu HF; Zhang Q; Jiang WH; Gu Y; Li FL
    Appl Environ Microbiol; 2020 Jul; 86(14):. PubMed ID: 32414802
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of tungsten and selenium on C
    Chakraborty S; Rene ER; Lens PNL; Rintala J; Veiga MC; Kennes C
    Chemosphere; 2020 Jul; 250():126105. PubMed ID: 32092562
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ethanol production during semi-continuous syngas fermentation in a trickle bed reactor using Clostridium ragsdalei.
    Devarapalli M; Atiyeh HK; Phillips JR; Lewis RS; Huhnke RL
    Bioresour Technol; 2016 Jun; 209():56-65. PubMed ID: 26950756
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carbon monoxide bioconversion to butanol-ethanol by Clostridium carboxidivorans: kinetics and toxicity of alcohols.
    Fernández-Naveira Á; Abubackar HN; Veiga MC; Kennes C
    Appl Microbiol Biotechnol; 2016 May; 100(9):4231-40. PubMed ID: 26921183
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient production of n-caproate from syngas by a co-culture of Clostridium aceticum and Clostridium kluyveri.
    Fernández-Blanco C; Veiga MC; Kennes C
    J Environ Manage; 2022 Jan; 302(Pt A):113992. PubMed ID: 34710762
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Production of chemicals from C1 gases (CO, CO
    Fernández-Naveira Á; Abubackar HN; Veiga MC; Kennes C
    World J Microbiol Biotechnol; 2017 Mar; 33(3):43. PubMed ID: 28160118
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of temperature, pH and buffer presence on ethanol production from synthesis gas by "Clostridium ragsdalei".
    Kundiyana DK; Wilkins MR; Maddipati P; Huhnke RL
    Bioresour Technol; 2011 May; 102(10):5794-9. PubMed ID: 21377362
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two stirred-tank bioreactors in series enable continuous production of alcohols from carbon monoxide with Clostridium carboxidivorans.
    Doll K; Rückel A; Kämpf P; Wende M; Weuster-Botz D
    Bioprocess Biosyst Eng; 2018 Oct; 41(10):1403-1416. PubMed ID: 29971481
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.