These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 3432136)

  • 81. Morphine and norepinephrine but not 5-hydroxytryptamine and gamma-aminobutyric acid inhibit the potassium-stimulated release of substance P from rat spinal cord slices.
    Pang IH; Vasko MR
    Brain Res; 1986 Jun; 376(2):268-79. PubMed ID: 2425894
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Effects of intravenous general anesthetics on [3H]GABA release from rat cortical synaptosomes.
    Murugaiah KD; Hemmings HC
    Anesthesiology; 1998 Oct; 89(4):919-28. PubMed ID: 9778010
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Differential effects of leucine and methionine enkephalin on morphine-induced analgesia, acute tolerance and dependence.
    Vaught JL; Takemori AE
    J Pharmacol Exp Ther; 1979 Jan; 208(1):86-90. PubMed ID: 569699
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Excitatory amino acid-evoked release of [3H]GABA from hippocampal neurons in primary culture.
    Harris KM; Miller RJ
    Brain Res; 1989 Mar; 482(1):23-33. PubMed ID: 2565138
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Isolation of a novel analgesic pentapeptide, neo-kyotorphin, from bovine brain.
    Takagi H; Shiomi H; Fukui K; Hayashi K; Kiso Y; Kitagawa K
    Life Sci; 1982 Oct 18-25; 31(16-17):1733-6. PubMed ID: 7154833
    [No Abstract]   [Full Text] [Related]  

  • 86. Analgesic effects of intraventricular morphine and enkephalins in nondependent and morphine-dependent rats.
    Brady LS; Holtzman SG
    J Pharmacol Exp Ther; 1982 Jul; 222(1):190-7. PubMed ID: 7201020
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Is GABA involved in analgesia?
    Sethy VH; Bombardt PA
    Res Commun Chem Pathol Pharmacol; 1978 Feb; 19(2):365-8. PubMed ID: 644128
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Dose-dependent effects of prolyl-leucyl-glycinamide on morphine-induced analgesia, tolerance and dependence.
    Contreras PC; Takemori AE
    Eur J Pharmacol; 1984 Jun; 102(1):13-22. PubMed ID: 6148243
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Mechanism of kyotorphin-induced release of Met-enkephalin from guinea pig striatum and spinal cord.
    Shiomi H; Kuraishi Y; Ueda H; Harada Y; Amano H; Takagi H
    Brain Res; 1981 Sep; 221(1):161-9. PubMed ID: 7272759
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Inhibition of gamma-aminobutyric acid release from synaptosomes by local anesthetics.
    Ikeda M; Dohi T; Tsujimoto A
    Anesthesiology; 1983 Jun; 58(6):495-9. PubMed ID: 6859579
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Effect of depolarizing agents on the Ca(2+)-independent and Ca(2+)-dependent release of [3H]GABA from sheep brain synaptosomes.
    Santos MS; Rodriguez R; Carvalho AP
    Biochem Pharmacol; 1992 Jul; 44(2):301-8. PubMed ID: 1642644
    [TBL] [Abstract][Full Text] [Related]  

  • 92. The effect of GABAergic agents on opiate analgesia.
    Mantegazza P; Tammiso R; Vicentini L; Zambotti F; Zonta N
    Pharmacol Res Commun; 1980 Mar; 12(3):239-47. PubMed ID: 7393985
    [No Abstract]   [Full Text] [Related]  

  • 93. Kyotorphin (tyrosine-arginine) synthetase in rat brain synaptosomes.
    Ueda H; Yoshihara Y; Fukushima N; Shiomi H; Nakamura A; Takagi H
    J Biol Chem; 1987 Jun; 262(17):8165-73. PubMed ID: 3597366
    [TBL] [Abstract][Full Text] [Related]  

  • 94. How is kyotorphin (Tyr-Arg) generated in the brain?
    Ueda H; Yoshihara Y; Nakamura A; Shiomi H; Satoh M; Takagi H
    Neuropeptides; 1985 Feb; 5(4-6):525-8. PubMed ID: 4000421
    [TBL] [Abstract][Full Text] [Related]  

  • 95. An enzymatically stable kyotorphin analog induces pain in subattomol doses.
    Ueda H; Inoue M; Weltrowska G; Schiller PW
    Peptides; 2000 May; 21(5):717-22. PubMed ID: 10876055
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Effects of L-thyrosyl - L-arginine (kyotorphin) on the behavior of rats and goldfish.
    Kolaeva SG; Semenova TP; Santalova IM; Moshkov DA; Anoshkina IA; Golozubova V
    Peptides; 2000 Sep; 21(9):1331-6. PubMed ID: 11072119
    [TBL] [Abstract][Full Text] [Related]  

  • 97. The analgesic activity of neo-kyotorphin: a newly identified pentapeptide from bovine brain.
    Fukui K; Amano H; Kiso Y; Kitagawa K; Takagi H
    Pharm Res; 1984 Jan; 1(1):39. PubMed ID: 24277183
    [TBL] [Abstract][Full Text] [Related]  

  • 98. [Physiological and pharmacological actions of a neuroactive dipeptide, kyotorphin, and its precursor, L-arginine, and clinical application].
    Takagi H
    Nihon Yakurigaku Zasshi; 1990 Sep; 96(3):85-96. PubMed ID: 2272541
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Review of Kyotorphin Research: A Mysterious Opioid Analgesic Dipeptide and Its Molecular, Physiological, and Pharmacological Characteristics.
    Ueda H
    Front Med Technol; 2021; 3():662697. PubMed ID: 35047919
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Hemoglobin-derived peptides as novel type of bioactive signaling molecules.
    Gomes I; Dale CS; Casten K; Geigner MA; Gozzo FC; Ferro ES; Heimann AS; Devi LA
    AAPS J; 2010 Dec; 12(4):658-69. PubMed ID: 20811967
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.