These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 34321468)

  • 21. Feature-based 3D+t descriptors of hyperactivated human sperm beat patterns.
    Hernández HO; Montoya F; Hernández-Herrera P; Díaz-Guerrero DS; Olveres J; Bloomfield-Gadêlha H; Darszon A; Escalante-Ramírez B; Corkidi G
    Heliyon; 2024 Mar; 10(5):e26645. PubMed ID: 38444471
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A monoclonal antibody against the dynein IC1 peptide of sea urchin spermatozoa inhibits the motility of sea urchin, dinoflagellate, and human flagellar axonemes.
    Gagnon C; White D; Huitorel P; Cosson J
    Mol Biol Cell; 1994 Sep; 5(9):1051-63. PubMed ID: 7841521
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Calcium-induced quiescence in reactivated sea urchin sperm.
    Gibbons BH; Gibbons IR
    J Cell Biol; 1980 Jan; 84(1):13-27. PubMed ID: 7350165
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular cloning and characterization of a radial spoke head protein of sea urchin sperm axonemes: involvement of the protein in the regulation of sperm motility.
    Gingras D; White D; Garin J; Cosson J; Huitorel P; Zingg H; Cibert C; Gagnon C
    Mol Biol Cell; 1998 Feb; 9(2):513-22. PubMed ID: 9450971
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A fully three-dimensional model of the interaction of driven elastic filaments in a Stokes flow with applications to sperm motility.
    Simons J; Fauci L; Cortez R
    J Biomech; 2015 Jun; 48(9):1639-51. PubMed ID: 25721767
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of the dynein inhibitor ciliobrevin on the flagellar motility of sea urchin spermatozoa.
    Wada Y; Baba SA; Kamimura S
    Cytoskeleton (Hoboken); 2015 Apr; 72(4):182-92. PubMed ID: 25809136
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fast compressive lens-free tomography for 3D biological cell culture imaging.
    Luo Z; Yurt A; Stahl R; Carlon MS; Ramalho AS; Vermeulen F; Lambrechts A; Braeken D; Lagae L
    Opt Express; 2020 Aug; 28(18):26935-26952. PubMed ID: 32906958
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of organic solvents on flagellar asymmetry and quiescence in sea urchin sperm.
    Gibbons BH
    J Cell Sci; 1982 Apr; 54():115-35. PubMed ID: 7076722
    [TBL] [Abstract][Full Text] [Related]  

  • 29. High-speed super-resolution imaging of rotationally symmetric structures using SPEED microscopy and 2D-to-3D transformation.
    Li Y; Tingey M; Ruba A; Yang W
    Nat Protoc; 2021 Jan; 16(1):532-560. PubMed ID: 33318694
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modification of flagellar waveform and adenosine triphosphatase activity in reactivated sea-urchin sperm treated with N-ethylmaleimide.
    Cosson MP; Tang WJ; Gibbons IR
    J Cell Sci; 1983 Mar; 60():231-49. PubMed ID: 6223931
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The phase of sperm flagellar beating is not conserved over a brief imposed interruption.
    Eshel D; Shingyoji C; Yoshimura K; Gibbons IR; Takahashi K
    Exp Cell Res; 1992 Oct; 202(2):552-5. PubMed ID: 1397107
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mechanical vibration compensation method for 3D+t multi-particle tracking in microscopic volumes.
    Pimentel A; Corkidi G
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():1429-32. PubMed ID: 19964530
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Reconstruction of the three-dimensional beat pattern underlying swimming behaviors of sperm.
    Gong A; Rode S; Gompper G; Kaupp UB; Elgeti J; Friedrich BM; Alvarez L
    Eur Phys J E Soft Matter; 2021 Jul; 44(7):87. PubMed ID: 34196906
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nanoscale Resolution 3D Snapshot Particle Tracking by Multifocal Microscopy.
    Wang X; Yi H; Gdor I; Hereld M; Scherer NF
    Nano Lett; 2019 Oct; 19(10):6781-6787. PubMed ID: 31490694
    [TBL] [Abstract][Full Text] [Related]  

  • 35.
    Hansen JN; Rassmann S; Jikeli JF; Wachten D
    Cells; 2018 Dec; 8(1):. PubMed ID: 30587820
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Digital holography as a method for 3D imaging and estimating the biovolume of motile cells.
    Merola F; Miccio L; Memmolo P; Di Caprio G; Galli A; Puglisi R; Balduzzi D; Coppola G; Netti P; Ferraro P
    Lab Chip; 2013 Dec; 13(23):4512-6. PubMed ID: 24129638
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transient flagellar waveforms in reactivated sea urchin sperm.
    Gibbons IR
    J Muscle Res Cell Motil; 1986 Jun; 7(3):245-50. PubMed ID: 2942559
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Flagellar movement of intact and demembranated, reactivated ram spermatozoa.
    Ishijima S; Witman GB
    Cell Motil Cytoskeleton; 1987; 8(4):375-91. PubMed ID: 2826021
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Strategies for locating the female gamete: the importance of measuring sperm trajectories in three spatial dimensions.
    Guerrero A; Carneiro J; Pimentel A; Wood CD; Corkidi G; Darszon A
    Mol Hum Reprod; 2011 Aug; 17(8):511-23. PubMed ID: 21642645
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Real-time microrobot posture recognition via biplane X-ray imaging system for external electromagnetic actuation.
    Nguyen PB; Kang B; Bappy DM; Choi E; Park S; Ko SY; Park JO; Kim CS
    Int J Comput Assist Radiol Surg; 2018 Nov; 13(11):1843-1852. PubMed ID: 30128951
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.