These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
197 related articles for article (PubMed ID: 34322318)
1. The main stage of recovery after the end-Permian mass extinction: taxonomic rediversification and ecologic reorganization of marine level-bottom communities during the Middle Triassic. Friesenbichler E; Hautmann M; Bucher H PeerJ; 2021; 9():e11654. PubMed ID: 34322318 [TBL] [Abstract][Full Text] [Related]
3. Early Triassic marine biotic recovery: the predators' perspective. Scheyer TM; Romano C; Jenks J; Bucher H PLoS One; 2014; 9(3):e88987. PubMed ID: 24647136 [TBL] [Abstract][Full Text] [Related]
4. The Luoping biota: exceptional preservation, and new evidence on the Triassic recovery from end-Permian mass extinction. Hu SX; Zhang QY; Chen ZQ; Zhou CY; Lü T; Xie T; Wen W; Huang JY; Benton MJ Proc Biol Sci; 2011 Aug; 278(1716):2274-82. PubMed ID: 21183583 [TBL] [Abstract][Full Text] [Related]
5. Global taxonomic diversity of anomodonts (tetrapoda, therapsida) and the terrestrial rock record across the Permian-Triassic boundary. Fröbisch J PLoS One; 2008; 3(11):e3733. PubMed ID: 19011684 [TBL] [Abstract][Full Text] [Related]
6. Complex marine bioturbation ecosystem engineering behaviors persisted in the wake of the end-Permian mass extinction. Cribb AT; Bottjer DJ Sci Rep; 2020 Jan; 10(1):203. PubMed ID: 31937801 [TBL] [Abstract][Full Text] [Related]
7. Palaeoecology of the Hiraiso Formation (Miyagi Prefecture, Japan) and implications for the recovery following the end-Permian mass extinction. Foster WJ; Godbold A; Brayard A; Frank AB; Grasby SE; Twitchett RJ; Oji T PeerJ; 2022; 10():e14357. PubMed ID: 36569998 [TBL] [Abstract][Full Text] [Related]
8. Marine anoxia and delayed Earth system recovery after the end-Permian extinction. Lau KV; Maher K; Altiner D; Kelley BM; Kump LR; Lehrmann DJ; Silva-Tamayo JC; Weaver KL; Yu M; Payne JL Proc Natl Acad Sci U S A; 2016 Mar; 113(9):2360-5. PubMed ID: 26884155 [TBL] [Abstract][Full Text] [Related]
9. Echinoids from the Tesero Member (Werfen Formation) of the Dolomites (Italy): implications for extinction and survival of echinoids in the aftermath of the end-Permian mass extinction. Thompson JR; Posenato R; Bottjer DJ; Petsios E PeerJ; 2019; 7():e7361. PubMed ID: 31531267 [TBL] [Abstract][Full Text] [Related]
10. Unexpected Early Triassic marine ecosystem and the rise of the Modern evolutionary fauna. Brayard A; Krumenacker LJ; Botting JP; Jenks JF; Bylund KG; Fara E; Vennin E; Olivier N; Goudemand N; Saucède T; Charbonnier S; Romano C; Doguzhaeva L; Thuy B; Hautmann M; Stephen DA; Thomazo C; Escarguel G Sci Adv; 2017 Feb; 3(2):e1602159. PubMed ID: 28246643 [TBL] [Abstract][Full Text] [Related]
11. Provincialization of terrestrial faunas following the end-Permian mass extinction. Sidor CA; Vilhena DA; Angielczyk KD; Huttenlocker AK; Nesbitt SJ; Peecook BR; Steyer JS; Smith RM; Tsuji LA Proc Natl Acad Sci U S A; 2013 May; 110(20):8129-33. PubMed ID: 23630295 [TBL] [Abstract][Full Text] [Related]
12. Trophic network models explain instability of Early Triassic terrestrial communities. Roopnarine PD; Angielczyk KD; Wang SC; Hertog R Proc Biol Sci; 2007 Sep; 274(1622):2077-86. PubMed ID: 17609191 [TBL] [Abstract][Full Text] [Related]
13. Good genes and good luck: ammonoid diversity and the end-Permian mass extinction. Brayard A; Escarguel G; Bucher H; Monnet C; Brühwiler T; Goudemand N; Galfetti T; Guex J Science; 2009 Aug; 325(5944):1118-21. PubMed ID: 19713525 [TBL] [Abstract][Full Text] [Related]
14. Redox chemistry changes in the Panthalassic Ocean linked to the end-Permian mass extinction and delayed Early Triassic biotic recovery. Zhang G; Zhang X; Hu D; Li D; Algeo TJ; Farquhar J; Henderson CM; Qin L; Shen M; Shen D; Schoepfer SD; Chen K; Shen Y Proc Natl Acad Sci U S A; 2017 Feb; 114(8):1806-1810. PubMed ID: 28167796 [TBL] [Abstract][Full Text] [Related]
15. Delayed recovery of non-marine tetrapods after the end-Permian mass extinction tracks global carbon cycle. Irmis RB; Whiteside JH Proc Biol Sci; 2012 Apr; 279(1732):1310-8. PubMed ID: 22031757 [TBL] [Abstract][Full Text] [Related]
16. Recovery from the most profound mass extinction of all time. Sahney S; Benton MJ Proc Biol Sci; 2008 Apr; 275(1636):759-65. PubMed ID: 18198148 [TBL] [Abstract][Full Text] [Related]
17. Species richness and disparity of parareptiles across the end-Permian mass extinction. MacDougall MJ; Brocklehurst N; Fröbisch J Proc Biol Sci; 2019 Mar; 286(1899):20182572. PubMed ID: 30890099 [TBL] [Abstract][Full Text] [Related]
18. Taxonomic and ecomorphological diversity of temnospondyl amphibians across the Permian-Triassic boundary in the Karoo Basin (South Africa). Tarailo DA J Morphol; 2018 Dec; 279(12):1840-1848. PubMed ID: 30397933 [TBL] [Abstract][Full Text] [Related]
19. Slit-band gastropods (Pleurotomariida) from the Upper Triassic St. Cassian Formation and their diversity dynamics in the Triassic. Karapunar B; Ntzel A Zootaxa; 2021 Sep; 5042(1):1-165. PubMed ID: 34811018 [TBL] [Abstract][Full Text] [Related]
20. Floral Assemblages and Patterns of Insect Herbivory during the Permian to Triassic of Northeastern Italy. Labandeira CC; Kustatscher E; Wappler T PLoS One; 2016; 11(11):e0165205. PubMed ID: 27829032 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]