These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 34322572)

  • 1. Investigating developmental changes in scalp-to-cortex correspondence using diffuse optical tomography sensitivity in infancy.
    Fu X; Richards JE
    Neurophotonics; 2021 Jul; 8(3):035003. PubMed ID: 34322572
    [No Abstract]   [Full Text] [Related]  

  • 2. Age-related changes in diffuse optical tomography sensitivity profiles in infancy.
    Fu X; Richards JE
    PLoS One; 2021; 16(6):e0252036. PubMed ID: 34101747
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Age-related changes in diffuse optical tomography sensitivity profiles from childhood to adulthood.
    Fu X; Richards JE
    J Biomed Opt; 2022 Jul; 27(8):. PubMed ID: 35810323
    [TBL] [Abstract][Full Text] [Related]  

  • 4. devfOLD: a toolbox for designing age-specific fNIRS channel placement.
    Fu X; Richards JE
    Neurophotonics; 2021 Oct; 8(4):045003. PubMed ID: 34881349
    [No Abstract]   [Full Text] [Related]  

  • 5. Depth-compensated diffuse optical tomography enhanced by general linear model analysis and an anatomical atlas of human head.
    Tian F; Liu H
    Neuroimage; 2014 Jan; 85 Pt 1(0 1):166-80. PubMed ID: 23859922
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeting brain regions of interest in functional near-infrared spectroscopy-Scalp-cortex correlation using subject-specific light propagation models.
    Cai L; Nitta T; Yokota S; Obata T; Okada E; Kawaguchi H
    Hum Brain Mapp; 2021 May; 42(7):1969-1986. PubMed ID: 33621388
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Subject-specific information enhances spatial accuracy of high-density diffuse optical tomography.
    Srinivasan S; Acharya D; Butters E; Collins-Jones L; Mancini F; Bale G
    Front Neuroergon; 2024; 5():1283290. PubMed ID: 38444841
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of Different Optical Properties of Head Tissues on Near-Infrared Spectroscopy Using Monte Carlo Simulations.
    Russomanno E; Kalyanov A; Jiang J; Ackermann M; Wolf M
    Adv Exp Med Biol; 2022; 1395():39-43. PubMed ID: 36527611
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anatomical correlations of the international 10-20 sensor placement system in infants.
    Kabdebon C; Leroy F; Simmonet H; Perrot M; Dubois J; Dehaene-Lambertz G
    Neuroimage; 2014 Oct; 99():342-56. PubMed ID: 24862070
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of the sensitivity of functional near-infrared spectroscopy brain imaging to anatomical variations in 5- to 11-year-old children.
    Whiteman AC; Santosa H; Chen DF; Perlman S; Huppert T
    Neurophotonics; 2018 Jan; 5(1):011009. PubMed ID: 28948192
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-dimensional probabilistic anatomical cranio-cerebral correlation via the international 10-20 system oriented for transcranial functional brain mapping.
    Okamoto M; Dan H; Sakamoto K; Takeo K; Shimizu K; Kohno S; Oda I; Isobe S; Suzuki T; Kohyama K; Dan I
    Neuroimage; 2004 Jan; 21(1):99-111. PubMed ID: 14741647
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatial registration for functional near-infrared spectroscopy: from channel position on the scalp to cortical location in individual and group analyses.
    Tsuzuki D; Dan I
    Neuroimage; 2014 Jan; 85 Pt 1():92-103. PubMed ID: 23891905
    [TBL] [Abstract][Full Text] [Related]  

  • 13. scatterBrains: an open database of human head models and companion optode locations for realistic Monte Carlo photon simulations.
    Wu MM; Horstmeyer R; Carp SA
    J Biomed Opt; 2023 Oct; 28(10):100501. PubMed ID: 37811478
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A 4D neonatal head model for diffuse optical imaging of pre-term to term infants.
    Brigadoi S; Aljabar P; Kuklisova-Murgasova M; Arridge SR; Cooper RJ
    Neuroimage; 2014 Oct; 100():385-94. PubMed ID: 24954280
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sensitivity of near-infrared spectroscopy and diffuse correlation spectroscopy to brain hemodynamics: simulations and experimental findings during hypercapnia.
    Selb J; Boas DA; Chan ST; Evans KC; Buckley EM; Carp SA
    Neurophotonics; 2014 Jul; 1(1):. PubMed ID: 25453036
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coregistering functional near-infrared spectroscopy with underlying cortical areas in infants.
    Lloyd-Fox S; Richards JE; Blasi A; Murphy DG; Elwell CE; Johnson MH
    Neurophotonics; 2014 Oct; 1(2):025006. PubMed ID: 25558463
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcranial brain atlas for school-aged children and adolescents.
    Zhang Z; Li Z; Xiao X; Zhao Y; Zuo XN; Zhu C
    Brain Stimul; 2021; 14(4):895-905. PubMed ID: 34029769
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extended hierarchical Bayesian diffuse optical tomography for removing scalp artifact.
    Shimokawa T; Kosaka T; Yamashita O; Hiroe N; Amita T; Inoue Y; Sato MA
    Biomed Opt Express; 2013; 4(11):2411-32. PubMed ID: 24298404
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The developmental trajectory of brain-scalp distance from birth through childhood: implications for functional neuroimaging.
    Beauchamp MS; Beurlot MR; Fava E; Nath AR; Parikh NA; Saad ZS; Bortfeld H; Oghalai JS
    PLoS One; 2011; 6(9):e24981. PubMed ID: 21957470
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 11.