BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 34322899)

  • 1. Histone Deacetylase Sirtuin 1 Promotes Loss of Primary Cilia in Cholangiocarcinoma.
    Pant K; Peixoto E; Richard S; Biswas A; O'Sullivan MG; Giama N; Ha Y; Yin J; Carotenuto P; Salati M; Ren Y; Yang R; Franco B; Roberts LR; Gradilone SA
    Hepatology; 2021 Dec; 74(6):3235-3248. PubMed ID: 34322899
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MicroRNA (miR)-433 and miR-22 dysregulations induce histone-deacetylase-6 overexpression and ciliary loss in cholangiocarcinoma.
    Mansini AP; Lorenzo Pisarello MJ; Thelen KM; Cruz-Reyes M; Peixoto E; Jin S; Howard BN; Trussoni CE; Gajdos GB; LaRusso NF; Perugorria MJ; Banales JM; Gradilone SA
    Hepatology; 2018 Aug; 68(2):561-573. PubMed ID: 29406621
    [TBL] [Abstract][Full Text] [Related]  

  • 3. HDAC6 inhibition restores ciliary expression and decreases tumor growth.
    Gradilone SA; Radtke BN; Bogert PS; Huang BQ; Gajdos GB; LaRusso NF
    Cancer Res; 2013 Apr; 73(7):2259-70. PubMed ID: 23370327
    [TBL] [Abstract][Full Text] [Related]  

  • 4. HDAC6-dependent ciliophagy is involved in ciliary loss and cholangiocarcinoma growth in human cells and murine models.
    Peixoto E; Jin S; Thelen K; Biswas A; Richard S; Morleo M; Mansini A; Holtorf S; Carbone F; Pastore N; Ballabio A; Franco B; Gradilone SA
    Am J Physiol Gastrointest Liver Physiol; 2020 Jun; 318(6):G1022-G1033. PubMed ID: 32338033
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential SIRT1 expression in hepatocellular carcinomas and cholangiocarcinoma of the liver.
    Al-Bahrani R; Tuertcher D; Zailaie S; Abuetabh Y; Nagamori S; Zetouni N; Bahitham W; Sergi C
    Ann Clin Lab Sci; 2015; 45(1):3-9. PubMed ID: 25696003
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Short-Chain Fatty Acid Butyrate Induces Cilia Formation and Potentiates the Effects of HDAC6 Inhibitors in Cholangiocarcinoma Cells.
    Pant K; Richard S; Gradilone SA
    Front Cell Dev Biol; 2021; 9():809382. PubMed ID: 35096835
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Knockdown of tripartite motif 59 (TRIM59) inhibits proliferation in cholangiocarcinoma via the PI3K/AKT/mTOR signalling pathway.
    Shen H; Zhang J; Zhang Y; Feng Q; Wang H; Li G; Jiang W; Li X
    Gene; 2019 May; 698():50-60. PubMed ID: 30822475
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Operative ubiquitin-specific protease 22 deubiquitination confers a more invasive phenotype to cholangiocarcinoma.
    Tian Y; Tang B; Wang C; Wang Y; Mao J; Yao Y; Gao Z; Liang R; Ye M; Cai S; Wang L
    Cell Death Dis; 2021 Jul; 12(7):678. PubMed ID: 34226501
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expression of transforming growth factor β1 promotes cholangiocarcinoma development and progression.
    Huang CK; Aihara A; Iwagami Y; Yu T; Carlson R; Koga H; Kim M; Zou J; Casulli S; Wands JR
    Cancer Lett; 2016 Sep; 380(1):153-62. PubMed ID: 27364974
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Clonorchis sinensis excretory-secretory products increase malignant characteristics of cholangiocarcinoma cells in three-dimensional co-culture with biliary ductal plates.
    Won J; Cho Y; Lee D; Jeon BY; Ju JW; Chung S; Pak JH
    PLoS Pathog; 2019 May; 15(5):e1007818. PubMed ID: 31121000
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Primary Cilia in Tumor Biology: The Primary Cilium as a Therapeutic Target in Cholangiocarcinoma.
    Gradilone SA; Pisarello MJL; LaRusso NF
    Curr Drug Targets; 2017; 18(8):958-963. PubMed ID: 25706257
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adaptor protein XB130 regulates the aggressiveness of cholangiocarcinoma.
    Poosekeaw P; Pairojkul C; Sripa B; Sa Ngiamwibool P; Iamsaard S; Sakonsinsiri C; Thanan R; Ungarreevittaya P
    PLoS One; 2021; 16(11):e0259075. PubMed ID: 34780466
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Serine/threonine protein phosphatase 5 is a potential therapeutic target in cholangiocarcinoma.
    Hu MH; Huang TT; Chao TI; Chen LJ; Chen YL; Tsai MH; Liu CY; Kao JH; Chen KF
    Liver Int; 2018 Dec; 38(12):2248-2259. PubMed ID: 29797403
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cholangiocarcinoma progression depends on the uptake and metabolization of extracellular lipids.
    Ruiz de Gauna M; Biancaniello F; González-Romero F; Rodrigues PM; Lapitz A; Gómez-Santos B; Olaizola P; Di Matteo S; Aurrekoetxea I; Labiano I; Nieva-Zuluaga A; Benito-Vicente A; Perugorria MJ; Apodaka-Biguri M; Paiva NA; Sáenz de Urturi D; Buqué X; Delgado I; Martín C; Azkargorta M; Elortza F; Calvisi DF; Andersen JB; Alvaro D; Cardinale V; Bujanda L; Banales JM; Aspichueta P
    Hepatology; 2022 Dec; 76(6):1617-1633. PubMed ID: 35030285
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gankyrin promotes tumor growth and metastasis through activation of IL-6/STAT3 signaling in human cholangiocarcinoma.
    Zheng T; Hong X; Wang J; Pei T; Liang Y; Yin D; Song R; Song X; Lu Z; Qi S; Liu J; Sun B; Xie C; Pan S; Li Y; Luo X; Li S; Fang X; Bhatta N; Jiang H; Liu L
    Hepatology; 2014 Mar; 59(3):935-46. PubMed ID: 24037855
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Chemosensory Function of Primary Cilia Regulates Cholangiocyte Migration, Invasion, and Tumor Growth.
    Mansini AP; Peixoto E; Jin S; Richard S; Gradilone SA
    Hepatology; 2019 Apr; 69(4):1582-1598. PubMed ID: 30299561
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polo-like kinase 2 is a mediator of hedgehog survival signaling in cholangiocarcinoma.
    Fingas CD; Mertens JC; Razumilava N; Sydor S; Bronk SF; Christensen JD; Rizvi SH; Canbay A; Treckmann JW; Paul A; Sirica AE; Gores GJ
    Hepatology; 2013 Oct; 58(4):1362-74. PubMed ID: 23703673
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extracellular Signal-Regulated Kinase 5 Regulates the Malignant Phenotype of Cholangiocarcinoma Cells.
    Gentilini A; Lori G; Caligiuri A; Raggi C; Di Maira G; Pastore M; Piombanti B; Lottini T; Arcangeli A; Madiai S; Navari N; Banales JM; Di Matteo S; Alvaro D; Duwe L; Andersen JB; Tubita A; Tusa I; Di Tommaso L; Campani C; Rovida E; Marra F
    Hepatology; 2021 Oct; 74(4):2007-2020. PubMed ID: 33959996
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SOX17 regulates cholangiocyte differentiation and acts as a tumor suppressor in cholangiocarcinoma.
    Merino-Azpitarte M; Lozano E; Perugorria MJ; Esparza-Baquer A; Erice O; Santos-Laso Á; O'Rourke CJ; Andersen JB; Jiménez-Agüero R; Lacasta A; D'Amato M; Briz Ó; Jalan-Sakrikar N; Huebert RC; Thelen KM; Gradilone SA; Aransay AM; Lavín JL; Fernández-Barrena MG; Matheu A; Marzioni M; Gores GJ; Bujanda L; Marin JJG; Banales JM
    J Hepatol; 2017 Jul; 67(1):72-83. PubMed ID: 28237397
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alterations in chemokine receptor CCR5 activity influence tumor cell biology in human cholangiocarcinoma cell lines.
    Yang J; Sontag D; Gong Y; Minuk GY
    Ann Hepatol; 2021; 21():100265. PubMed ID: 33045415
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.