These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 34323033)
1. [Construction of Oral Insulin-Loaded Solid Lipid Nanoparticles and Their Intestinal Epithelial Cell Transcytosis Study]. Zheng YX; He Q; Xu M; Huang Y Sichuan Da Xue Xue Bao Yi Xue Ban; 2021 Jul; 52(4):570-576. PubMed ID: 34323033 [TBL] [Abstract][Full Text] [Related]
2. Multifunctional Nanoparticles Enable Efficient Oral Delivery of Biomacromolecules via Improving Payload Stability and Regulating the Transcytosis Pathway. Zheng Y; Wu J; Shan W; Wu L; Zhou R; Liu M; Cui Y; Zhou M; Zhang Z; Huang Y ACS Appl Mater Interfaces; 2018 Oct; 10(40):34039-34049. PubMed ID: 30207680 [TBL] [Abstract][Full Text] [Related]
3. Cellular uptake and transcytosis of lipid-based nanoparticles across the intestinal barrier: Relevance for oral drug delivery. Neves AR; Queiroz JF; Costa Lima SA; Figueiredo F; Fernandes R; Reis S J Colloid Interface Sci; 2016 Feb; 463():258-65. PubMed ID: 26550783 [TBL] [Abstract][Full Text] [Related]
4. Polyester-Solid Lipid Mixed Nanoparticles with Improved Stability in Gastro-Intestinal Tract Facilitated Oral Delivery of Larotaxel. Gou J; Feng S; Liang Y; Fang G; Zhang H; Yin T; Zhang Y; He H; Wang Y; Tang X Mol Pharm; 2017 Nov; 14(11):3750-3761. PubMed ID: 28945434 [TBL] [Abstract][Full Text] [Related]
5. Self-Assembled Core-Shell-Type Lipid-Polymer Hybrid Nanoparticles: Intracellular Trafficking and Relevance for Oral Absorption. Li Q; Xia D; Tao J; Shen A; He Y; Gan Y; Wang C J Pharm Sci; 2017 Oct; 106(10):3120-3130. PubMed ID: 28559042 [TBL] [Abstract][Full Text] [Related]
6. Virus-Mimicking Mesoporous Silica Nanoparticles with an Electrically Neutral and Hydrophilic Surface to Improve the Oral Absorption of Insulin by Breaking Through Dual Barriers of the Mucus Layer and the Intestinal Epithelium. Zhang Y; Xiong M; Ni X; Wang J; Rong H; Su Y; Yu S; Mohammad IS; Leung SSY; Hu H ACS Appl Mater Interfaces; 2021 Apr; 13(15):18077-18088. PubMed ID: 33830730 [TBL] [Abstract][Full Text] [Related]
7. Novel Solid Lipid Nanoparticle with Endosomal Escape Function for Oral Delivery of Insulin. Xu Y; Zheng Y; Wu L; Zhu X; Zhang Z; Huang Y ACS Appl Mater Interfaces; 2018 Mar; 10(11):9315-9324. PubMed ID: 29484890 [TBL] [Abstract][Full Text] [Related]
8. Mechanism of transport of saquinavir-loaded nanostructured lipid carriers across the intestinal barrier. Beloqui A; Solinís MÁ; Gascón AR; del Pozo-Rodríguez A; des Rieux A; Préat V J Control Release; 2013 Mar; 166(2):115-23. PubMed ID: 23266764 [TBL] [Abstract][Full Text] [Related]
9. Impact Of Penetratin Stereochemistry On The Oral Bioavailability Of Insulin-Loaded Solid Lipid Nanoparticles. Alsulays BB; Anwer MK; Soliman GA; Alshehri SM; Khafagy ES Int J Nanomedicine; 2019; 14():9127-9138. PubMed ID: 31819423 [TBL] [Abstract][Full Text] [Related]
10. N-trimethyl chitosan chloride-coated PLGA nanoparticles overcoming multiple barriers to oral insulin absorption. Sheng J; Han L; Qin J; Ru G; Li R; Wu L; Cui D; Yang P; He Y; Wang J ACS Appl Mater Interfaces; 2015 Jul; 7(28):15430-41. PubMed ID: 26111015 [TBL] [Abstract][Full Text] [Related]
11. Charge-switchable zwitterionic polycarboxybetaine particle as an intestinal permeation enhancer for efficient oral insulin delivery. Li Y; Ji W; Peng H; Zhao R; Zhang T; Lu Z; Yang J; Liu R; Zhang X Theranostics; 2021; 11(9):4452-4466. PubMed ID: 33754071 [TBL] [Abstract][Full Text] [Related]
12. Size-exclusive effect of nanostructured lipid carriers on oral drug delivery. Li H; Chen M; Su Z; Sun M; Ping Q Int J Pharm; 2016 Sep; 511(1):524-537. PubMed ID: 27452421 [TBL] [Abstract][Full Text] [Related]
13. Fabrication of solid lipid nanoparticles of lurasidone HCl for oral delivery: optimization, Patel MH; Mundada VP; Sawant KK Drug Dev Ind Pharm; 2019 Aug; 45(8):1242-1257. PubMed ID: 30880488 [No Abstract] [Full Text] [Related]
14. A Nanocomposite Vehicle Based on Metal-Organic Framework Nanoparticle Incorporated Biodegradable Microspheres for Enhanced Oral Insulin Delivery. Zhou Y; Liu L; Cao Y; Yu S; He C; Chen X ACS Appl Mater Interfaces; 2020 May; 12(20):22581-22592. PubMed ID: 32340452 [TBL] [Abstract][Full Text] [Related]
15. Exploiting Apical Sodium-Dependent Bile Acid Transporter (ASBT)-Mediated Endocytosis with Multi-Functional Deoxycholic Acid Grafted Alginate Amide Nanoparticles as an Oral Insulin Delivery System. Razmjooei M; Hosseini SMH; Yousefi G; Golmakani MT; Eskandari MH Pharm Res; 2024 Feb; 41(2):335-353. PubMed ID: 38114803 [TBL] [Abstract][Full Text] [Related]
16. Development of an M cell targeted nanocomposite system for effective oral protein delivery: preparation, in vitro and in vivo characterization. Song JG; Lee SH; Han HK J Nanobiotechnology; 2021 Jan; 19(1):15. PubMed ID: 33422063 [TBL] [Abstract][Full Text] [Related]
18. Mucoadhesive versus mucopenetrating nanoparticles for oral delivery of insulin. Cheng H; Cui Z; Guo S; Zhang X; Huo Y; Mao S Acta Biomater; 2021 Nov; 135():506-519. PubMed ID: 34487859 [TBL] [Abstract][Full Text] [Related]
19. Enteric-coated capsules filled with mono-disperse micro-particles containing PLGA-lipid-PEG nanoparticles for oral delivery of insulin. Yu F; Li Y; Liu CS; Chen Q; Wang GH; Guo W; Wu XE; Li DH; Wu WD; Chen XD Int J Pharm; 2015 Apr; 484(1-2):181-91. PubMed ID: 25724135 [TBL] [Abstract][Full Text] [Related]
20. Investigation Of Vitamin B Long L; Lai M; Mao X; Luo J; Yuan X; Zhang LM; Ke Z; Yang L; Deng DY Int J Nanomedicine; 2019; 14():7743-7758. PubMed ID: 31571874 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]