These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
555 related articles for article (PubMed ID: 34323052)
1. [Application of Automated Machine Learning Based on Radiomics Features of T2WI and RS-EPI DWI to Predict Preoperative T Staging of Rectal Cancer]. Wen DG; Hu SX; Li ZL; Deng XB; Tian C; Li X; Wang XR; Leng Q; Xia CC Sichuan Da Xue Xue Bao Yi Xue Ban; 2021 Jul; 52(4):698-705. PubMed ID: 34323052 [TBL] [Abstract][Full Text] [Related]
2. [Application of MRI-based Radiomics Models in the Assessment of Hepatic Metastasis of Rectal Cancer]. Hu SX; Yang K; Wang XR; Wen DG; Xia CC; Li X; Li ZL Sichuan Da Xue Xue Bao Yi Xue Ban; 2021 Mar; 52(2):311-318. PubMed ID: 33829708 [TBL] [Abstract][Full Text] [Related]
3. Radiomics based on T2-weighted and diffusion-weighted MR imaging for preoperative prediction of tumor deposits in rectal cancer. Sun Z; Xia F; Lv W; Li J; Zou Y; Wu J Am J Surg; 2024 Jun; 232():59-67. PubMed ID: 38272767 [TBL] [Abstract][Full Text] [Related]
4. [Radiomics-based prediction of microsatellite instability in stage Ⅱ and Ⅲ rectal cancer patients based on T2WI MRI and diffusion-weighted imaging]. Xiang S; Zheng LB; Zhu L; Gao Y; Wang DS; Liu SL; Zhang S; Wang TY; Lu Y Zhonghua Wai Ke Za Zhi; 2023 Sep; 61(9):782-787. PubMed ID: 37491171 [No Abstract] [Full Text] [Related]
5. Biparametric magnetic resonance imaging-based radiomics features for prediction of lymphovascular invasion in rectal cancer. Tong P; Sun D; Chen G; Ni J; Li Y BMC Cancer; 2023 Jan; 23(1):61. PubMed ID: 36650498 [TBL] [Abstract][Full Text] [Related]
6. A combinatorial MRI sequence-based radiomics model for preoperative prediction of microsatellite instability status in rectal cancer. Xing X; Li D; Peng J; Shu Z; Zhang Y; Song Q Sci Rep; 2024 May; 14(1):11760. PubMed ID: 38783014 [TBL] [Abstract][Full Text] [Related]
7. A Nomogram of Combining IVIM-DWI and MRI Radiomics From the Primary Lesion of Rectal Adenocarcinoma to Assess Nonenlarged Lymph Node Metastasis Preoperatively. Jia H; Jiang X; Zhang K; Shang J; Zhang Y; Fang X; Gao F; Li N; Dong J J Magn Reson Imaging; 2022 Sep; 56(3):658-667. PubMed ID: 35090079 [TBL] [Abstract][Full Text] [Related]
8. Multiparametric MRI-based machine learning models for preoperatively predicting rectal adenoma with canceration. Li P; Song G; Wu R; Li H; Zhang R; Zuo P; Li A MAGMA; 2021 Oct; 34(5):707-716. PubMed ID: 33646452 [TBL] [Abstract][Full Text] [Related]
9. Radiomics based on readout-segmented echo-planar imaging (RS-EPI) diffusion-weighted imaging (DWI) for prognostic risk stratification of patients with rectal cancer: a two-centre, machine learning study using the framework of predictive, preventive, and personalized medicine. Liu Z; Wang Y; Shen F; Zhang Z; Gong J; Fu C; Shen C; Li R; Jing G; Cai S; Zhang Z; Sun Y; Tong T EPMA J; 2022 Dec; 13(4):633-647. PubMed ID: 36505889 [TBL] [Abstract][Full Text] [Related]
10. Preoperative Noninvasive Evaluation of Tumor Budding in Rectal Cancer Using Multiparameter MRI Radiomics. Peng L; Wang D; Zhuang Z; Chen X; Xue J; Zhu H; Zhang L Acad Radiol; 2024 Jun; 31(6):2334-2345. PubMed ID: 38135624 [TBL] [Abstract][Full Text] [Related]
11. Development and external validation of a multiparametric MRI-based radiomics model for preoperative prediction of microsatellite instability status in rectal cancer: a retrospective multicenter study. Li Z; Zhang J; Zhong Q; Feng Z; Shi Y; Xu L; Zhang R; Yu F; Lv B; Yang T; Huang C; Cui F; Chen F Eur Radiol; 2023 Mar; 33(3):1835-1843. PubMed ID: 36282309 [TBL] [Abstract][Full Text] [Related]
12. Radiomics Based on T2-Weighted Imaging and Apparent Diffusion Coefficient Images for Preoperative Evaluation of Lymph Node Metastasis in Rectal Cancer Patients. Li C; Yin J Front Oncol; 2021; 11():671354. PubMed ID: 34041033 [TBL] [Abstract][Full Text] [Related]
13. Multiparametric MR Imaging Radiomics Signatures for Assessing the Recurrence Risk of ER+/HER2- Breast Cancer Quantified With 21-Gene Recurrence Score. Chen Y; Tang W; Liu W; Li R; Wang Q; Shen X; Gong J; Gu Y; Peng W J Magn Reson Imaging; 2023 Aug; 58(2):444-453. PubMed ID: 36440706 [TBL] [Abstract][Full Text] [Related]
14. T-staging of rectal cancer: Utility of single-shot turbo spin-echo diffusion-weighted imaging with T2-weighted images and fusion images. Ogawa M; Urano M; Takaishi T; Kan H; Arai N; Takahashi H; Hara M; Saito M; Shibamoto Y PLoS One; 2021; 16(4):e0249433. PubMed ID: 33882087 [TBL] [Abstract][Full Text] [Related]
15. Preoperative detection of lymphovascular invasion in rectal cancer using intravoxel incoherent motion imaging based on radiomics. Wong C; Liu T; Zhang C; Li M; Zhang H; Wang Q; Fu Y Med Phys; 2024 Jan; 51(1):179-191. PubMed ID: 37929807 [TBL] [Abstract][Full Text] [Related]
16. Clinical Breast MRI-based Radiomics for Distinguishing Benign and Malignant Lesions: An Analysis of Sequences and Enhanced Phases. Wang G; Guo Q; Shi D; Zhai H; Luo W; Zhang H; Ren Z; Yan G; Ren K J Magn Reson Imaging; 2024 Sep; 60(3):1178-1189. PubMed ID: 38006286 [TBL] [Abstract][Full Text] [Related]
17. Readout-segmented echo-planar imaging improves the image quality of diffusion-weighted MR imaging in rectal cancer: Comparison with single-shot echo-planar diffusion-weighted sequences. Xia CC; Liu X; Peng WL; Li L; Zhang JG; Meng WJ; Deng XB; Zuo PL; Li ZL Eur J Radiol; 2016 Oct; 85(10):1818-1823. PubMed ID: 27666622 [TBL] [Abstract][Full Text] [Related]
18. Deep-learning-based 3D super-resolution MRI radiomics model: superior predictive performance in preoperative T-staging of rectal cancer. Hou M; Zhou L; Sun J Eur Radiol; 2023 Jan; 33(1):1-10. PubMed ID: 35726100 [TBL] [Abstract][Full Text] [Related]
19. The role of readout-segmented echo-planar imaging-based diffusion-weighted imaging in evaluating tumor response of locally advanced rectal cancer after neoadjuvant chemoradiotherapy. Yang L; Xia C; Liu D; Fang X; Pan X; Ma L; Wu B Acta Radiol; 2020 Sep; 61(9):1155-1164. PubMed ID: 31924105 [TBL] [Abstract][Full Text] [Related]
20. [A prediction model of pathological complete response in patients with locally advanced rectal cancer after PD-1 antibody combined with total neoadjuvant chemoradiotherapy based on MRI radiomics]. Zhang XY; Zhu HT; Li XT; Li YJ; Li ZW; Wang WH; Wu AW; Sun YS; Zhang L Zhonghua Wei Chang Wai Ke Za Zhi; 2022 Mar; 25(3):228-234. PubMed ID: 35340172 [No Abstract] [Full Text] [Related] [Next] [New Search]