These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 34323061)
1. Effect of the beta-adrenergic blockade on intestinal lactate production and glycogen concentration in dogs infused with hexoses. Allen MO; Salman TM; Alada ARA; Odetayo AF; Patrick EB; Salami SA J Complement Integr Med; 2022 Jun; 19(2):287-296. PubMed ID: 34323061 [TBL] [Abstract][Full Text] [Related]
2. Role of Adrenergic Receptors in Glucose, Fructose and Galactose-Induced Increases in Intestinal Glucose Uptake in Dogs. Salman TM; Alada AR; Oyebola DD Niger J Physiol Sci; 2014 Dec; 29(2):85-9. PubMed ID: 26196572 [TBL] [Abstract][Full Text] [Related]
3. Intestinal glucose uptake responses to infusion of glucose, fructose and galactose in dogs Intestinal glucose uptake responses to infusion of glucose, fructose and galactose in dogs. Salman TM; Alada AR; Oyebola DD Niger J Physiol Sci; 2014 Jun; 29(1):23-7. PubMed ID: 26196562 [TBL] [Abstract][Full Text] [Related]
4. Metabolic Fate of the Glucose Taken up by the Intestine During Induced Hyperglycaemia in Dogs. Shittu ST; Alada ARA; Oyebola DDO Niger J Physiol Sci; 2018 Jun; 33(1):37-49. PubMed ID: 30091731 [TBL] [Abstract][Full Text] [Related]
5. Intestinal Glucose Release Following Insulin-induced Hypoglycemia in Dogs: Implication of Gluconeogenesis and Glycogenolysis. Shittu ST; Alada AA; Oyebola D Niger J Physiol Sci; 2020 Dec; 35(2):135-142. PubMed ID: 34009199 [TBL] [Abstract][Full Text] [Related]
6. A physiological increase in the hepatic glycogen level does not affect the response of net hepatic glucose uptake to insulin. Winnick JJ; An Z; Moore MC; Ramnanan CJ; Farmer B; Shiota M; Cherrington AD Am J Physiol Endocrinol Metab; 2009 Aug; 297(2):E358-66. PubMed ID: 19470836 [TBL] [Abstract][Full Text] [Related]
7. Effect of adrenaline on glucose uptake in the rabbit small intestine. Oyebola DD; Taiwo EO; Idolor GO; Alada AR; Owoeye O; Isehunwa GO Afr J Med Med Sci; 2011 Sep; 40(3):225-33. PubMed ID: 22428517 [TBL] [Abstract][Full Text] [Related]
8. Effect of nicotine on glucose uptake in the rabbit small intestine. Oyebola DD; Idolor GO; Taiwo EO; Alada AR; Owoeye O; Isehunwa GO Afr J Med Med Sci; 2009 Jun; 38(2):119-30. PubMed ID: 20175414 [TBL] [Abstract][Full Text] [Related]
9. The role of adrenergic receptors in the increased glucose uptake by the canine gut. Alada AR; Oyebola DD Afr J Med Med Sci; 1997; 26(1-2):75-8. PubMed ID: 10895237 [TBL] [Abstract][Full Text] [Related]
10. Inclusion of low amounts of fructose with an intraduodenal glucose load markedly reduces postprandial hyperglycemia and hyperinsulinemia in the conscious dog. Shiota M; Moore MC; Galassetti P; Monohan M; Neal DW; Shulman GI; Cherrington AD Diabetes; 2002 Feb; 51(2):469-78. PubMed ID: 11812757 [TBL] [Abstract][Full Text] [Related]
11. Hepatic alpha- and beta-adrenergic receptors are not essential for the increase in R(a) during exercise in diabetes. Coker RH; Lacy DB; Williams PE; Wasserman DH Am J Physiol Endocrinol Metab; 2000 Mar; 278(3):E444-51. PubMed ID: 10710498 [TBL] [Abstract][Full Text] [Related]
12. The direct effects of catecholamines on hepatic glucose production occur via alpha(1)- and beta(2)-receptors in the dog. Chu CA; Sindelar DK; Igawa K; Sherck S; Neal DW; Emshwiller M; Cherrington AD Am J Physiol Endocrinol Metab; 2000 Aug; 279(2):E463-73. PubMed ID: 10913048 [TBL] [Abstract][Full Text] [Related]
13. Intestinal glucose uptake in normal, untreated and insulin-treated diabetic dogs. Alada AR; Falokun PO; Oyebola DD Afr J Med Med Sci; 2005 Jun; 34(2):147-56. PubMed ID: 16749339 [TBL] [Abstract][Full Text] [Related]
14. Fructose augments infection-impaired net hepatic glucose uptake during TPN administration. Donmoyer CM; Ejiofor J; Lacy DB; Chen SS; McGuinness OP Am J Physiol Endocrinol Metab; 2001 May; 280(5):E703-11. PubMed ID: 11287352 [TBL] [Abstract][Full Text] [Related]
15. Adrenergic blockade reduces skeletal muscle glycolysis and Na(+), K(+)-ATPase activity during hemorrhage. McCarter FD; James JH; Luchette FA; Wang L; Friend LA; King JK; Evans JM; George MA; Fischer JE J Surg Res; 2001 Aug; 99(2):235-44. PubMed ID: 11469892 [TBL] [Abstract][Full Text] [Related]
16. Effect of prior exercise on the partitioning of an intestinal glucose load between splanchnic bed and skeletal muscle. Hamilton KS; Gibbons FK; Bracy DP; Lacy DB; Cherrington AD; Wasserman DH J Clin Invest; 1996 Jul; 98(1):125-35. PubMed ID: 8690783 [TBL] [Abstract][Full Text] [Related]
17. Effect of acidosis on skeletal muscle metabolism with and without propranolol. Barclay JK; Graham TE; Wolfe BR; Van Dijk J; Wilson BA Can J Physiol Pharmacol; 1990 Jul; 68(7):870-6. PubMed ID: 2143431 [TBL] [Abstract][Full Text] [Related]
18. Role of hepatic alpha- and beta-adrenergic receptor stimulation on hepatic glucose production during heavy exercise. Coker RH; Krishna MG; Lacy DB; Bracy DP; Wasserman DH Am J Physiol; 1997 Nov; 273(5):E831-8. PubMed ID: 9374667 [TBL] [Abstract][Full Text] [Related]
19. Insulin and beta adrenergic effects during endotoxin shock: in vivo myocardial interactions. Law WR; McLane MP; Raymond RM Cardiovasc Res; 1990 Jan; 24(1):72-80. PubMed ID: 2183937 [TBL] [Abstract][Full Text] [Related]
20. Effects of beta-adrenergic blockade on hepatic and renal glucose production during hypoglycemia in conscious dogs. Cersosimo E; Zaitseva IN; Ajmal M Am J Physiol; 1998 Nov; 275(5):E792-7. PubMed ID: 9814998 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]