BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 34323402)

  • 1. The Human Melanoma Proteome Atlas-Complementing the melanoma transcriptome.
    Betancourt LH; Gil J; Sanchez A; Doma V; Kuras M; Murillo JR; Velasquez E; Çakır U; Kim Y; Sugihara Y; Parada IP; Szeitz B; Appelqvist R; Wieslander E; Welinder C; de Almeida NP; Woldmar N; Marko-Varga M; Eriksson J; Pawłowski K; Baldetorp B; Ingvar C; Olsson H; Lundgren L; Lindberg H; Oskolas H; Lee B; Berge E; Sjögren M; Eriksson C; Kim D; Kwon HJ; Knudsen B; Rezeli M; Malm J; Hong R; Horvath P; Szász AM; Tímár J; Kárpáti S; Horvatovich P; Miliotis T; Nishimura T; Kato H; Steinfelder E; Oppermann M; Miller K; Florindi F; Zhou Q; Domont GB; Pizzatti L; Nogueira FCS; Szadai L; Németh IB; Ekedahl H; Fenyö D; Marko-Varga G
    Clin Transl Med; 2021 Jul; 11(7):e451. PubMed ID: 34323402
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The human melanoma proteome atlas-Defining the molecular pathology.
    Betancourt LH; Gil J; Kim Y; Doma V; Çakır U; Sanchez A; Murillo JR; Kuras M; Parada IP; Sugihara Y; Appelqvist R; Wieslander E; Welinder C; Velasquez E; de Almeida NP; Woldmar N; Marko-Varga M; Pawłowski K; Eriksson J; Szeitz B; Baldetorp B; Ingvar C; Olsson H; Lundgren L; Lindberg H; Oskolas H; Lee B; Berge E; Sjögren M; Eriksson C; Kim D; Kwon HJ; Knudsen B; Rezeli M; Hong R; Horvatovich P; Miliotis T; Nishimura T; Kato H; Steinfelder E; Oppermann M; Miller K; Florindi F; Zhou Q; Domont GB; Pizzatti L; Nogueira FCS; Horvath P; Szadai L; Tímár J; Kárpáti S; Szász AM; Malm J; Fenyö D; Ekedahl H; Németh IB; Marko-Varga G
    Clin Transl Med; 2021 Jul; 11(7):e473. PubMed ID: 34323403
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Pro-Oncogenic Sphingolipid-Metabolizing Enzyme β-Galactosylceramidase Modulates the Proteomic Landscape in BRAF(V600E)-Mutated Human Melanoma Cells.
    Capoferri D; Chiodelli P; Corli M; Belleri M; Scalvini E; Mignani L; Guerra J; Grillo E; De Giorgis V; Manfredi M; Presta M
    Int J Mol Sci; 2023 Jun; 24(13):. PubMed ID: 37445731
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasma proteome alterations by MAPK inhibitors in BRAF
    Babačić H; Eriksson H; Pernemalm M
    Neoplasia; 2021 Aug; 23(8):783-791. PubMed ID: 34246984
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep-proteome mapping of WM-266-4 human metastatic melanoma cells: From oncogenic addiction to druggable targets.
    Konstantakou EG; Velentzas AD; Anagnostopoulos AK; Litou ZI; Konstandi OA; Giannopoulou AF; Anastasiadou E; Voutsinas GE; Tsangaris GT; Stravopodis DJ
    PLoS One; 2017; 12(2):e0171512. PubMed ID: 28158294
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Broad spectrum identification of SUMO substrates in melanoma cells.
    Ganesan AK; Kho Y; Kim SC; Chen Y; Zhao Y; White MA
    Proteomics; 2007 Jun; 7(13):2216-21. PubMed ID: 17549794
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Large-scale label-free comparative proteomics analysis of polo-like kinase 1 inhibition via the small-molecule inhibitor BI 6727 (Volasertib) in BRAF(V600E) mutant melanoma cells.
    Cholewa BD; Pellitteri-Hahn MC; Scarlett CO; Ahmad N
    J Proteome Res; 2014 Nov; 13(11):5041-50. PubMed ID: 24884503
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasma proteomics, the Human Proteome Project, and cancer-associated alternative splice variant proteins.
    Omenn GS
    Biochim Biophys Acta; 2014 May; 1844(5):866-73. PubMed ID: 24211518
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integrated Transcriptomic and Proteomic Analysis of Primary Human Umbilical Vein Endothelial Cells.
    Madugundu AK; Na CH; Nirujogi RS; Renuse S; Kim KP; Burns KH; Wilks C; Langmead B; Ellis SE; Collado-Torres L; Halushka MK; Kim MS; Pandey A
    Proteomics; 2019 Aug; 19(15):e1800315. PubMed ID: 30983154
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Silencing FLI or targeting CD13/ANPEP lead to dephosphorylation of EPHA2, a mediator of BRAF inhibitor resistance, and induce growth arrest or apoptosis in melanoma cells.
    Azimi A; Tuominen R; Costa Svedman F; Caramuta S; Pernemalm M; Frostvik Stolt M; Kanter L; Kharaziha P; Lehtiö J; Hertzman Johansson C; Höiom V; Hansson J; Egyhazi Brage S
    Cell Death Dis; 2017 Aug; 8(8):e3029. PubMed ID: 29048432
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proteomic test for anti-PD-1 checkpoint blockade treatment of metastatic melanoma with and without BRAF mutations.
    Ascierto PA; Capone M; Grimaldi AM; Mallardo D; Simeone E; Madonna G; Roder H; Meyer K; Asmellash S; Oliveira C; Roder J; Grigorieva J
    J Immunother Cancer; 2019 Mar; 7(1):91. PubMed ID: 30925943
    [TBL] [Abstract][Full Text] [Related]  

  • 12. BRAFV600E remodels the melanocyte transcriptome and induces BANCR to regulate melanoma cell migration.
    Flockhart RJ; Webster DE; Qu K; Mascarenhas N; Kovalski J; Kretz M; Khavari PA
    Genome Res; 2012 Jun; 22(6):1006-14. PubMed ID: 22581800
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PhosphoPath: Visualization of Phosphosite-centric Dynamics in Temporal Molecular Networks.
    Raaijmakers LM; Giansanti P; Possik PA; Mueller J; Peeper DS; Heck AJ; Altelaar AF
    J Proteome Res; 2015 Oct; 14(10):4332-41. PubMed ID: 26317507
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Clinical Proteomics of Metastatic Melanoma Reveals Profiles of Organ Specificity and Treatment Resistance.
    Beck L; Harel M; Yu S; Markovits E; Boursi B; Markel G; Geiger T
    Clin Cancer Res; 2021 Apr; 27(7):2074-2086. PubMed ID: 33446566
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proteomic phenotyping of metastatic melanoma reveals putative signatures of MEK inhibitor response and prognosis.
    Krisp C; Parker R; Pascovici D; Hayward NK; Wilmott JS; Thompson JF; Mann GJ; Long GV; Scolyer RA; Molloy MP
    Br J Cancer; 2018 Sep; 119(6):713-723. PubMed ID: 30116025
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unexpected extensive lysine acetylation in the trump-card antibiotic producer Streptomyces roseosporus revealed by proteome-wide profiling.
    Liao G; Xie L; Li X; Cheng Z; Xie J
    J Proteomics; 2014 Jun; 106():260-9. PubMed ID: 24768905
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Optimized Shotgun Strategy for the Rapid Generation of Comprehensive Human Proteomes.
    Bekker-Jensen DB; Kelstrup CD; Batth TS; Larsen SC; Haldrup C; Bramsen JB; Sørensen KD; Høyer S; Ørntoft TF; Andersen CL; Nielsen ML; Olsen JV
    Cell Syst; 2017 Jun; 4(6):587-599.e4. PubMed ID: 28601559
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proteogenomics Reveals Perturbed Signaling Networks in Malignant Melanoma Cells Resistant to BRAF Inhibition.
    Schmitt M; Sinnberg T; Bratl K; Zittlau K; Garbe C; Macek B; Nalpas NC
    Mol Cell Proteomics; 2021; 20():100163. PubMed ID: 34673281
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Methods Employed in Mass Spectrometric Analysis of Posttranslational Modifications (PTMs) and Protein-Protein Interactions (PPIs).
    Yakubu RR; Nieves E; Weiss LM
    Adv Exp Med Biol; 2019; 1140():169-198. PubMed ID: 31347048
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantifying Proteome and Protein Modifications in Activated T Cells by Multiplexed Isobaric Labeling Mass Spectrometry.
    Tan H; Blanco DB; Xie B; Li Y; Wu Z; Chi H; Peng J
    Methods Mol Biol; 2021; 2285():297-317. PubMed ID: 33928561
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.