These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 34323494)
1. Ion-Pairing Mechanism for the Valinomycin-Mediated Transport of Potassium Ions across Phospholipid Bilayers. Su Z; Leitch JJ; Sek S; Lipkowski J Langmuir; 2021 Aug; 37(31):9613-9621. PubMed ID: 34323494 [TBL] [Abstract][Full Text] [Related]
2. How Valinomycin Ionophores Enter and Transport K Su Z; Ran X; Leitch JJ; Schwan AL; Faragher R; Lipkowski J Langmuir; 2019 Dec; 35(51):16935-16943. PubMed ID: 31742409 [TBL] [Abstract][Full Text] [Related]
3. Potassium ion transport by valinomycin across a Hg-supported lipid bilayer. Becucci L; Moncelli MR; Naumann R; Guidelli R J Am Chem Soc; 2005 Sep; 127(38):13316-23. PubMed ID: 16173764 [TBL] [Abstract][Full Text] [Related]
4. Voltammetric study on ion transport across a bilayer lipid membrane in the presence of a hydrophobic ion or an ionophore. Shirai O; Yoshida Y; Kihara S Anal Bioanal Chem; 2006 Oct; 386(3):494-505. PubMed ID: 16847627 [TBL] [Abstract][Full Text] [Related]
5. Influence of the lipid environment on valinomycin structure and cation complex formation. Halsey CM; Benham DA; JiJi RD; Cooley JW Spectrochim Acta A Mol Biomol Spectrosc; 2012 Oct; 96():200-6. PubMed ID: 22683555 [TBL] [Abstract][Full Text] [Related]
6. Impedance analysis of phosphatidylcholine membranes modified with valinomycin. Naumowicz M; Kotynska J; Petelska A; Figaszewski Z Eur Biophys J; 2006 Feb; 35(3):239-46. PubMed ID: 16283290 [TBL] [Abstract][Full Text] [Related]
7. Combination of the electrogenic ionophores, valinomycin and CCCP, can lead to non-electrogenic K+/H+ exchange on bilayer lipid membranes. Orlov VN; Antonenko YN; Bulychev AA; Yaguzhinsky LS FEBS Lett; 1994 May; 345(2-3):104-6. PubMed ID: 7515356 [TBL] [Abstract][Full Text] [Related]
8. 1H NMR study of valinomycin conformation in a phospholipid bilayer. Feigenson GW; Meers PR Nature; 1980 Jan; 283(5744):313-4. PubMed ID: 7352006 [TBL] [Abstract][Full Text] [Related]
9. [Change in the state of a lecithin molecular layer at the heptane-aqueous KCl solutions interface on the introduction of the ionophore, valinomycin]. Shliakhter TA; Lev AA Tsitologiia; 1980 Oct; 22(10):1193-9. PubMed ID: 7445085 [TBL] [Abstract][Full Text] [Related]
10. [Phase separation in dipalmitoyl phosphatidylcholine bilayers induced by ionophores and binary electrolytes]. Gracheva OA; Sokolova AE; Lev AA Biofizika; 1982; 27(5):795-9. PubMed ID: 6897197 [TBL] [Abstract][Full Text] [Related]
11. Modification of cation selectivity of valinomycin by complexing it with an anion: delta pH decay studies. Prabhananda BS; Kombrabail MH Biochem Mol Biol Int; 1996 Feb; 38(2):417-24. PubMed ID: 8850538 [TBL] [Abstract][Full Text] [Related]
12. Molecular structure and mechanisms of action of cyclic and linear ion transport antibiotics. Duax WL; Griffin JF; Langs DA; Smith GD; Grochulski P; Pletnev V; Ivanov V Biopolymers; 1996; 40(1):141-55. PubMed ID: 8541445 [TBL] [Abstract][Full Text] [Related]
13. The effect of the presence of valinomycin on the interfacial tension of lecithin membrane. Petelska AD; Naumowicz M; Figaszewski ZA Colloids Surf B Biointerfaces; 2005 Aug; 44(2-3):158-62. PubMed ID: 16051474 [TBL] [Abstract][Full Text] [Related]
14. Effect of phloretin on ionophore mediated electroneutral transmembrane translocations of H(+), K(+) and Na(+) in phospholipid vesicles. Bala S; Kombrabail MH; Prabhananda BS Biochim Biophys Acta; 2001 Feb; 1510(1-2):258-69. PubMed ID: 11342163 [TBL] [Abstract][Full Text] [Related]
15. A study of Li+-selective permeation through lipid bilayer membranes mediated by a new ionophore (AS701). Margalit R; Shanzer A Biochim Biophys Acta; 1981 Dec; 649(2):441-8. PubMed ID: 7317408 [TBL] [Abstract][Full Text] [Related]
16. Rethinking Ion Transport by Ionophores: Experimental and Computational Investigation of Single Water Hydration in Valinomycin-K Sato E; Hirata K; Lisy JM; Ishiuchi SI; Fujii M J Phys Chem Lett; 2021 Feb; 12(6):1754-1758. PubMed ID: 33570410 [TBL] [Abstract][Full Text] [Related]
17. Electrogenic and nonelectrogenic ion fluxes across lipid and mitochondrial membranes mediated by monensin and monensin ethyl ester. Antonenko YN; Rokitskaya TI; Huczyński A Biochim Biophys Acta; 2015 Apr; 1848(4):995-1004. PubMed ID: 25600660 [TBL] [Abstract][Full Text] [Related]
18. Micron dimensioned cavity array supported lipid bilayers for the electrochemical investigation of ionophore activity. Maher S; Basit H; Forster RJ; Keyes TE Bioelectrochemistry; 2016 Dec; 112():16-23. PubMed ID: 27420132 [TBL] [Abstract][Full Text] [Related]
19. Ion transport mediated by the valinomycin analogue cyclo(L-Lac-L-Val-D-Pro-D-Val)3 in lipid bilayer membranes. Latorre R; Donovan JJ; Koroshetz W; Tosteson DC; Gisin BF J Gen Physiol; 1981 Apr; 77(4):387-417. PubMed ID: 7241088 [TBL] [Abstract][Full Text] [Related]
20. Effect of the structure of cholesterol-based tethered bilayer lipid membranes on ionophore activity. Kendall JK; Johnson BR; Symonds PH; Imperato G; Bushby RJ; Gwyer JD; van Berkel C; Evans SD; Jeuken LJ Chemphyschem; 2010 Jul; 11(10):2191-8. PubMed ID: 20512836 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]