These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 3432371)

  • 1. Modulation of fast neutron pulses for dose reduction during in vivo activation analysis: application to the measurement of magnesium in a bone phantom.
    Kacperek A
    Phys Med Biol; 1987 Dec; 32(12):1649-53. PubMed ID: 3432371
    [No Abstract]   [Full Text] [Related]  

  • 2. The effect of bone on dose distributions produced by the Fermi National Laboratory fast-neutron beam.
    McGinley PH; McLaren JR
    Radiology; 1979 Oct; 133(1):246-8. PubMed ID: 472305
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calculation of fast neutron depth-dose in the ICRU standard tissue phantom and the derivation of neutron fluence-to-dose-index conversion factors.
    Chen SY; Chilton AB
    Radiat Res; 1979 Jun; 78(3):335-70. PubMed ID: 451162
    [No Abstract]   [Full Text] [Related]  

  • 4. Triple chamber technique for thermal neutron dose measurements in fast neutron beams.
    Schmidt R; Hess A
    Strahlentherapie; 1982 Oct; 158(10):612-5. PubMed ID: 7179343
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fast neutron dosimetry of a bone-tissue interface.
    Bhatia DP; Nagarajan PS
    Phys Med Biol; 1979 Jan; 24(1):166-70. PubMed ID: 432266
    [No Abstract]   [Full Text] [Related]  

  • 6. Angular dependence of the components of dose to the bone marrow and abdomen in a human phantom from 2.95-MeV neutrons.
    Facey RA; Clifford CE
    Health Phys; 1973 Dec; 25(6):545-57. PubMed ID: 4784264
    [No Abstract]   [Full Text] [Related]  

  • 7. Measured and calculated dose distributions from neutrons incident on a tissue-equivalent phantom.
    Hubbell HH; Chen WL; Shinpaugh WH; Jones TD
    Health Phys; 1974 Sep; 27(3):289-97. PubMed ID: 4436052
    [No Abstract]   [Full Text] [Related]  

  • 8. [IV. Studies on cell biological experiments to the relative biological effectiveness (RBE) of fast neutrons in different phantom depths (author's transl)].
    Magdon E
    Arch Geschwulstforsch; 1975; 45(8):746-52. PubMed ID: 1230122
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Neutron flow measurements in the d(14) + Be neutron radiation field from the cyclotron in Essen].
    Pöller F; Sauerwein W; Rau D; Wagner FM; Olthoff K; Rassow J; Sack H
    Strahlenther Onkol; 1990 Jun; 166(6):426-9. PubMed ID: 2363106
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of finite size of ion chambers used for neutron dosimetry.
    Zoetelief J; Engels AC; Broerse JJ; Mijnheer BJ
    Phys Med Biol; 1980 Nov; 25(6):1121-31. PubMed ID: 7208625
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a dual phantom technique for measuring the fast neutron component of dose in boron neutron capture therapy.
    Sakurai Y; Tanaka H; Kondo N; Kinashi Y; Suzuki M; Masunaga S; Ono K; Maruhashi A
    Med Phys; 2015 Nov; 42(11):6651-7. PubMed ID: 26520755
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neutron therapy in the G.D.R.III. Estimation of dose distribution in phantome (author's transl).
    Matschke S; Welker K
    Arch Geschwulstforsch; 1975; 45(8):737-45. PubMed ID: 1230121
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A linear regression analysis of the gamma dose in fast neutron beams.
    Almond PR; Rosanky SL
    Med Phys; 1980; 7(4):383-5. PubMed ID: 7393166
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microdosimetric investigations on collimated fast-neutron beams for radiation therapy: I. Measurements of microdosimetric spectra and particle dose fractions in a water phantom for fast neutrons from 14 MeV deuterons on beryllium.
    Fidorra J; Booz J
    Phys Med Biol; 1981 Jan; 26(1):27-41. PubMed ID: 6264509
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gamma dose measurement in a d(80) + Be neutron beam.
    Harrison GH; Cox CR
    Med Phys; 1979; 6(3):233-4. PubMed ID: 470850
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distortion of fast-neutron dose distribution by bone.
    McGinley PH; McLaren JR
    Med Phys; 1976; 3(3):181-3. PubMed ID: 819771
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The basis of a suggested instrumental approach to the surveying of neutron fields and the measurement of personal dose from neutrons.
    Harvey JR
    Phys Med Biol; 1981 Mar; 26(2):253-67. PubMed ID: 7220602
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Principle of neutron teletherapy with the Soviet U-120 cyclotron].
    Letov VN; Bel'skiĭ EM; Ievlev SM; Komov AI; Protasevich ET
    Med Radiol (Mosk); 1987 Jun; 32(6):27-33. PubMed ID: 3110536
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Displacement correction factor for fast-neutron dosimetry in a tissue-equivalent phantom.
    Shapiro P; Attix FH; August LS; Theus RB; Rogers CC
    Med Phys; 1976; 3(2):87-90. PubMed ID: 817124
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A directional dose equivalent monitor for neutrons.
    d'Errico F; Alberts WG; Curzio G; Matzke M; Nath R; Siebert BR
    Radiat Prot Dosimetry; 2001; 93(4):315-24. PubMed ID: 11548358
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.