BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

335 related articles for article (PubMed ID: 34323732)

  • 21. Mitigation of harmful chemical formation from pyrolysis of tobacco waste using CO
    Lee T; Jung S; Lin KA; Tsang YF; Kwon EE
    J Hazard Mater; 2021 Jan; 401():123416. PubMed ID: 32763706
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Catalytic pyrolysis of mechanically non-recyclable waste plastics mixture: Kinetics and pyrolysis in laboratory-scale reactor.
    Kremer I; Tomić T; Katančić Z; Erceg M; Papuga S; Vuković JP; Schneider DR
    J Environ Manage; 2021 Oct; 296():113145. PubMed ID: 34271358
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Production and utilization of pyrolysis oil from solidplastic wastes: A review on pyrolysis process and influence of reactors design.
    Sekar M; Ponnusamy VK; Pugazhendhi A; Nižetić S; Praveenkumar TR
    J Environ Manage; 2022 Jan; 302(Pt B):114046. PubMed ID: 34775338
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Valorizing spent mushroom substrate into syngas by the thermo-chemical process.
    Lee T; Choi D; Park J; Tsang YF; Andrew Lin KY; Jung S; Kwon EE
    Bioresour Technol; 2024 Jan; 391(Pt B):130007. PubMed ID: 37952593
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Catalytic pyrolysis of petroleum-based and biodegradable plastic waste to obtain high-value chemicals.
    Saeaung K; Phusunti N; Phetwarotai W; Assabumrungrat S; Cheirsilp B
    Waste Manag; 2021 May; 127():101-111. PubMed ID: 33932851
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Pyrolysis of municipal plastic wastes: Influence of raw material composition.
    López A; de Marco I; Caballero BM; Laresgoiti MF; Adrados A
    Waste Manag; 2010 Apr; 30(4):620-7. PubMed ID: 19926462
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Catalytic pyrolysis for upgrading silver grass (Miscanthus sinensis) and carbon dioxide into flammable gases.
    Lee S; Jung S; Kwon EE
    Bioresour Technol; 2022 Dec; 365():128153. PubMed ID: 36270387
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Employing CO
    Lee J; Choi D; Tsang YF; Oh JI; Kwon EE
    Environ Pollut; 2017 May; 224():476-483. PubMed ID: 28256357
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In situ catalytic reforming of plastic pyrolysis vapors using MSW incineration ashes.
    Ahamed A; Liang L; Chan WP; Tan PCK; Yip NTX; Bobacka J; Veksha A; Yin K; Lisak G
    Environ Pollut; 2021 May; 276():116681. PubMed ID: 33611206
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Production of an alternative fuel by the co-pyrolysis of landfill recovered plastic wastes and used lubrication oils.
    Breyer S; Mekhitarian L; Rimez B; Haut B
    Waste Manag; 2017 Feb; 60():363-374. PubMed ID: 28063835
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of eggshell- and homo-type Ni/Al
    Valizadeh S; Ko CH; Lee J; Lee SH; Yu YJ; Show PL; Rhee GH; Park YK
    J Environ Manage; 2021 Sep; 294():112959. PubMed ID: 34116308
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Pyrolysis and gasification of landfilled plastic wastes with Ni-Mg-La/Al2O3 catalyst.
    Kaewpengkrow P; Atong D; Sricharoenchaikul V
    Environ Technol; 2012 Dec; 33(22-24):2489-95. PubMed ID: 23437645
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Co-pyrolysis performances, synergistic mechanisms, and products of textile dyeing sludge and medical plastic wastes.
    Ding Z; Liu J; Chen H; Huang S; Evrendilek F; He Y; Zheng L
    Sci Total Environ; 2021 Dec; 799():149397. PubMed ID: 34371397
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Method development and evaluation of pyrolysis oils from mixed waste plastic by GC-VUV.
    Dunkle MN; Pijcke P; Winniford WL; Ruitenbeek M; Bellos G
    J Chromatogr A; 2021 Jan; 1637():461837. PubMed ID: 33383237
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Simultaneous production of aromatics-rich bio-oil and carbon nanomaterials from catalytic co-pyrolysis of biomass/plastic wastes and in-line catalytic upgrading of pyrolysis gas.
    Xu D; Yang S; Su Y; Shi L; Zhang S; Xiong Y
    Waste Manag; 2021 Feb; 121():95-104. PubMed ID: 33360310
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Catalytic fast co-pyrolysis of waste greenhouse plastic films and rice husk using hierarchical micro-mesoporous composite molecular sieve.
    Li Z; Zhong Z; Zhang B; Wang W; Seufitelli GVS; Resende FLP
    Waste Manag; 2020 Feb; 102():561-568. PubMed ID: 31770690
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Chemical Upcycling of Waste Plastics to High Value-Added Products via Pyrolysis: Current Trends, Future Perspectives, and Techno-Feasibility Analysis.
    Hussain I; Aitani A; Malaibari Z; Alasiri H; Naseem Akhtar M; Fahad Aldosari O; Ahmed S
    Chem Rec; 2023 Apr; 23(4):e202200294. PubMed ID: 36850030
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Recycling of Wastes Plastics and Tires from Automotive Industry.
    Čabalová I; Ház A; Krilek J; Bubeníková T; Melicherčík J; Kuvik T
    Polymers (Basel); 2021 Jul; 13(13):. PubMed ID: 34279354
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparative study on carbon dioxide-cofed catalytic pyrolysis of grass and woody biomass.
    Kim JH; Jung S; Lin KA; Rinklebe J; Kwon EE
    Bioresour Technol; 2021 Mar; 323():124633. PubMed ID: 33412496
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Catalytic pyrolysis of plastic waste for the production of liquid fuels for engines.
    Budsaereechai S; Hunt AJ; Ngernyen Y
    RSC Adv; 2019 Feb; 9(10):5844-5857. PubMed ID: 35515940
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.