These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

338 related articles for article (PubMed ID: 34323732)

  • 41. Catalytic pyrolysis of plastic waste for the production of liquid fuels for engines.
    Budsaereechai S; Hunt AJ; Ngernyen Y
    RSC Adv; 2019 Feb; 9(10):5844-5857. PubMed ID: 35515940
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Thermo-catalytic co-pyrolysis of waste plastic and paper in batch and tubular reactors for in-situ product improvement.
    Fekhar B; Zsinka V; Miskolczi N
    J Environ Manage; 2020 Sep; 269():110741. PubMed ID: 32560985
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Recent advances in catalytic co-pyrolysis of biomass and plastic waste for the production of petroleum-like hydrocarbons.
    Ryu HW; Kim DH; Jae J; Lam SS; Park ED; Park YK
    Bioresour Technol; 2020 Aug; 310():123473. PubMed ID: 32389430
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A comprehensive review on integrative approach for sustainable management of plastic waste and its associated externalities.
    Tejaswini MSSR; Pathak P; Ramkrishna S; Ganesh PS
    Sci Total Environ; 2022 Jun; 825():153973. PubMed ID: 35183624
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A review on thermal and catalytic pyrolysis of plastic solid waste (PSW).
    Al-Salem SM; Antelava A; Constantinou A; Manos G; Dutta A
    J Environ Manage; 2017 Jul; 197():177-198. PubMed ID: 28384612
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Analysis of pyrolysis index and reaction mechanism in microwave-assisted ex-situ catalytic co-pyrolysis of agro-residual and plastic wastes.
    Suriapparao DV; Gautam R; Rao Jeeru L
    Bioresour Technol; 2022 Aug; 357():127357. PubMed ID: 35605781
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Recent progress on biomass co-pyrolysis conversion into high-quality bio-oil.
    Hassan H; Lim JK; Hameed BH
    Bioresour Technol; 2016 Dec; 221():645-655. PubMed ID: 27671343
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Sustainable and Highly Efficient Recycling of Plastic Waste into Syngas via a Chemical Looping Scheme.
    Hu Q; Ok YS; Wang CH
    Environ Sci Technol; 2022 Jun; 56(12):8953-8963. PubMed ID: 35648174
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Conventional pyrolysis of Plastic waste for Product recovery and utilization of pyrolytic gases for carbon nanotubes production.
    Singh RK; Ruj B; Sadhukhan AK; Gupta P
    Environ Sci Pollut Res Int; 2022 Mar; 29(14):20007-20016. PubMed ID: 33179183
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Use of steel slag as a catalyst in CO
    Lee S; Kim SH; Jung S; Park YK; Tsang YF; Kwon EE
    J Hazard Mater; 2020 Jun; 392():122275. PubMed ID: 32066020
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Conversion of waste plastics into low emissive hydrocarbon fuel using catalyst produced from biowaste.
    Jahnavi N; Kanmani K; Kumar PS; Varjani S
    Environ Sci Pollut Res Int; 2021 Dec; 28(45):63638-63645. PubMed ID: 33113066
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Characterization of products obtained from pyrolysis and steam gasification of wood waste, RDF, and RPF.
    Hwang IH; Kobayashi J; Kawamoto K
    Waste Manag; 2014 Feb; 34(2):402-10. PubMed ID: 24246576
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Thermogravimetric and calorimetric characteristics during co-pyrolysis of municipal solid waste components.
    Ansah E; Wang L; Shahbazi A
    Waste Manag; 2016 Oct; 56():196-206. PubMed ID: 27324928
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Process Simulation and Life Cycle Assessment of Waste Plastics: A Comparison of Pyrolysis and Hydrocracking.
    Azam MU; Vete A; Afzal W
    Molecules; 2022 Nov; 27(22):. PubMed ID: 36432185
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Catalytic dry reforming of waste plastics from different waste treatment plants for production of synthesis gases.
    Saad JM; Williams PT
    Waste Manag; 2016 Dec; 58():214-220. PubMed ID: 27650631
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Catalytic pyrolysis of biomass-plastic wastes in the presence of MgO and MgCO
    Yuan R; Shen Y
    Bioresour Technol; 2019 Dec; 293():122076. PubMed ID: 31479853
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Novel strategy in biohydrogen energy production from COVID - 19 plastic waste: A critical review.
    Dharmaraj S; Ashokkumar V; Chew KW; Chia SR; Show PL; Ngamcharussrivichai C
    Int J Hydrogen Energy; 2022 Dec; 47(100):42051-42074. PubMed ID: 34776598
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Simultaneous production of high-valued carbon nanotubes and hydrogen from catalytic pyrolysis of waste plastics: The role of cellulose impurity.
    Liu Q; Peng B; Cai N; Su Y; Wang S; Wu P; Cao Q; Zhang H
    Waste Manag; 2024 Feb; 174():420-428. PubMed ID: 38104414
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Life cycle environmental impacts of chemical recycling via pyrolysis of mixed plastic waste in comparison with mechanical recycling and energy recovery.
    Jeswani H; Krüger C; Russ M; Horlacher M; Antony F; Hann S; Azapagic A
    Sci Total Environ; 2021 May; 769():144483. PubMed ID: 33486181
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Pyrolysis of polypropylene plastic waste into carbonaceous char: Priority of plastic waste management amidst COVID-19 pandemic.
    Harussani MM; Sapuan SM; Rashid U; Khalina A; Ilyas RA
    Sci Total Environ; 2022 Jan; 803():149911. PubMed ID: 34525745
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.