These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 34323793)

  • 1. Migration of leather tannins and chromium in soils under the effect of simulated rain.
    Qiao DW; Yao J; Song LJ; Yang JY
    Chemosphere; 2021 Dec; 284():131413. PubMed ID: 34323793
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessing the impact of lime on chromium migration in soil caused by basic chromium sulfate in tannery.
    Song LJ; Xu YH; Yang JY
    Environ Technol; 2023 Apr; 44(10):1367-1378. PubMed ID: 34739353
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Release and Migration of Cr in the Soil under Alternating Wet-Dry Conditions.
    Chen Z; Chen Y; Liang J; Sun Z; Zhao H; Huang Y
    Toxics; 2024 Feb; 12(2):. PubMed ID: 38393235
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of tannic acid on the transport behavior of trivalent chromium in soils and its mechanism.
    Xu T; Jiang X; Tang Y; Zeng Y; Zhang W; Shi B
    Environ Pollut; 2022 Jul; 305():119328. PubMed ID: 35447257
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of clay minerals and nanoparticles on chromium fractionation in soil contaminated with leather factory waste.
    Taghipour M; Jalali M
    J Hazard Mater; 2015 Oct; 297():127-33. PubMed ID: 25956643
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mobility and storage sinks for chromium and other metals in soils impacted by leather tannery wastes.
    Chen H; Arocena JM; Li J; Thring RW; Zhou J
    J Environ Monit; 2012 Dec; 14(12):3240-8. PubMed ID: 23149884
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chromium Transport and Fate in Vadose Zone: Effects of Simulated Acid Rain and Colloidal Types.
    Zhang W; Zhao K; Wan B; Liang Z; Xu W; Li J
    Int J Environ Res Public Health; 2022 Dec; 19(24):. PubMed ID: 36554303
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distribution and mobility of Cr in tannery waste amended semi-arid soils under simulated rainfall.
    Aceves MB; Santos HE; Berber JD; Mota JL; Vázquez RR
    J Hazard Mater; 2009 Nov; 171(1-3):851-8. PubMed ID: 19604640
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of nanohydroxyapatite on cadmium leaching and environmental risks under simulated acid rain.
    Zhao C; Ren S; Zuo Q; Wang S; Zhou Y; Liu W; Liang S
    Sci Total Environ; 2018 Jun; 627():553-560. PubMed ID: 29426178
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chromium fractionation in semi-arid soils amended with chromium and tannery sludge.
    Barajas-Aceves M; Corona-Hernández J; Rodríguez-Vázquez R
    J Hazard Mater; 2007 Jul; 146(1-2):91-7. PubMed ID: 17222971
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Leaching of cadmium, chromium, copper, lead, and zinc from two slag dumps with different environmental exposure periods under dynamic acidic condition.
    Jin Z; Liu T; Yang Y; Jackson D
    Ecotoxicol Environ Saf; 2014 Jun; 104():43-50. PubMed ID: 24632122
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chromium Release from a COPR-Contaminated Soil at Varying Water Content and Redox Conditions.
    Matern K; Mansfeldt T
    J Environ Qual; 2016 Jul; 45(4):1259-67. PubMed ID: 27380074
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Leaching and reduction of chromium in soil as affected by soil organic content and plants.
    Banks MK; Schwab AP; Henderson C
    Chemosphere; 2006 Jan; 62(2):255-64. PubMed ID: 16000212
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Leaching Behaviors of Chromium(III) and Ammonium-Nitrogen from a Tannery Sludge in North China: Comparison of Batch and Column Investigations.
    Kong X; Wang Y; Ma L; Huang G; Zhang Z; Han Z
    Int J Environ Res Public Health; 2020 Aug; 17(16):. PubMed ID: 32824851
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multi-step column leaching using low-molecular-weight organic acids for remediating vanadium- and chromium-contaminated soil.
    Zou Q; Gao Y; Yi S; Jiang J; Aihemaiti A; Li D; Yang M
    Environ Sci Pollut Res Int; 2019 May; 26(15):15406-15413. PubMed ID: 30941713
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Removal of Cr(VI) from contaminated soil by electrokinetic remediation.
    Sawada A; Mori K; Tanaka S; Fukushima M; Tatsumi K
    Waste Manag; 2004; 24(5):483-90. PubMed ID: 15120432
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Soil Pollution Characteristics and Microbial Responses in a Vertical Profile with Long-Term Tannery Sludge Contamination in Hebei, China.
    Kong X; Li C; Wang P; Huang G; Li Z; Han Z
    Int J Environ Res Public Health; 2019 Feb; 16(4):. PubMed ID: 30781422
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Leaching behaviors and chemical fraction distribution of exogenous selenium in three agricultural soils through simulated rainfall.
    Zhai H; Xue M; Du Z; Wang D; Zhou F; Feng P; Liang DL
    Ecotoxicol Environ Saf; 2019 May; 173():393-400. PubMed ID: 30797097
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of electrokinetic removal of heavy metals from soils by sequential extraction analysis.
    Reddy KR; Xu CY; Chinthamreddy S
    J Hazard Mater; 2001 Jun; 84(2-3):279-96. PubMed ID: 11406312
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulating the migration and species distribution of Cr and inorganic ions from tanneries in the vadose zone.
    Guo SS; Xu YH; Yang JY
    J Environ Manage; 2021 Jun; 288():112441. PubMed ID: 33823454
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.