These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 34323794)

  • 41. Simultaneous removal of tetracycline and copper ions from wastewater by flow-electrode capacitive deionization.
    Tong P; Hang Z; Zhu W; Li Z
    Environ Technol; 2023 Dec; ():1-8. PubMed ID: 38158763
    [No Abstract]   [Full Text] [Related]  

  • 42. Photocatalytic conversion of ethylenediaminetetraacetic acid dissolved in real electroplating wastewater to hydrogen in a solar light-responsive system.
    Su EC; Lee JT; Gong YJ; Huang BS; Wey MY
    Water Sci Technol; 2018 Jul; 77(11-12):2851-2857. PubMed ID: 30065137
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Recovery of V(V) from complex vanadium solution using capacitive deionization (CDI) with resin/carbon composite electrode.
    Bao S; Duan J; Zhang Y
    Chemosphere; 2018 Oct; 208():14-20. PubMed ID: 29857207
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Enhanced NH
    He X; Chen W; Sun F; Jiang Z; Li B; Li XY; Lin L
    Environ Sci Technol; 2023 Jun; 57(23):8828-8838. PubMed ID: 37246552
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Ion exchange recovery of Ni(II) from simulated electroplating waste solutions containing anionic ligands.
    Juang RS; Kao HC; Liu FY
    J Hazard Mater; 2006 Jan; 128(1):53-9. PubMed ID: 16125313
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Enhancing capacitive deionization technology as an effective method for water treatment using commercially available graphene.
    Dursun D; Ozkul S; Yuksel R; Unalan HE
    Water Sci Technol; 2017 Feb; 75(3-4):643-649. PubMed ID: 28192358
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Sustainable approach on removal of toxic metals from electroplating industrial wastewater using dissolved air flotation.
    Pooja G; Kumar PS; Prasannamedha G; Varjani S; Vo DN
    J Environ Manage; 2021 Oct; 295():113147. PubMed ID: 34214795
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Sorption of Ni(II) ions from aqueous solution by Lewatit cation-exchange resin.
    Dizge N; Keskinler B; Barlas H
    J Hazard Mater; 2009 Aug; 167(1-3):915-26. PubMed ID: 19231079
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A comparison of multicomponent electrosorption in capacitive deionization and membrane capacitive deionization.
    Hassanvand A; Chen GQ; Webley PA; Kentish SE
    Water Res; 2018 Mar; 131():100-109. PubMed ID: 29277078
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Optimization and reaction kinetics on the removal of Nickel and COD from wastewater from electroplating industry using Electrocoagulation and Advanced Oxidation Processes.
    Moersidik SS; Nugroho R; Handayani M; Kamilawati ; Pratama MA
    Heliyon; 2020 Feb; 6(2):e03319. PubMed ID: 32099914
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Nickel ion removal from wastewater using the microbial electrolysis cell.
    Qin B; Luo H; Liu G; Zhang R; Chen S; Hou Y; Luo Y
    Bioresour Technol; 2012 Oct; 121():458-61. PubMed ID: 22850172
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A novel application of membrane distillation to facilitate nickel recovery from electroplating wastewater.
    Duong HC; Pham TM; Luong ST; Nguyen KV; Nguyen DT; Ansari AJ; Nghiem LD
    Environ Sci Pollut Res Int; 2019 Aug; 26(23):23407-23415. PubMed ID: 31201706
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A systematic investigation on synergistic electroplating and capacitive removal of Pb
    Gui Y; Blackwood DJ
    RSC Adv; 2021 Mar; 11(21):12877-12884. PubMed ID: 35423799
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [Preparation of NiAl-MMO Films Electrode and Its Capacitive Deionization Property].
    Wang T; Zhu CS; Hu CZ
    Huan Jing Ke Xue; 2016 Feb; 37(2):602-8. PubMed ID: 27363150
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Experimental and theoretical study of a new CDI device for the treatment of desulfurization wastewater.
    Liu C; Ma L; Xu Y; Wang F; Tan Y; Huang L; Ma S
    Environ Sci Pollut Res Int; 2022 Jan; 29(1):518-530. PubMed ID: 34331231
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Metal-Ion Depletion Impacts the Stability and Performance of Battery Electrode Deionization over Multiple Cycles.
    Shi L; Newcomer E; Son M; Pothanamkandathil V; Gorski CA; Galal A; Logan BE
    Environ Sci Technol; 2021 Apr; 55(8):5412-5421. PubMed ID: 33784453
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Trace-Fe-Enhanced Capacitive Deionization of Saline Water by Boosting Electron Transfer of Electro-Adsorption Sites.
    Wang G; Yan T; Zhang J; Shi L; Zhang D
    Environ Sci Technol; 2020 Jul; 54(13):8411-8419. PubMed ID: 32453947
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Electrochemical decomposition of fluorinated wetting agents in plating industry waste water.
    Fath A; Sacher F; McCaskie JE
    Water Sci Technol; 2016; 73(7):1659-66. PubMed ID: 27054738
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Adsorption of Cu(II) and Ni(II) ions from wastewater onto bentonite and bentonite/GO composite.
    Chang YS; Au PI; Mubarak NM; Khalid M; Jagadish P; Walvekar R; Abdullah EC
    Environ Sci Pollut Res Int; 2020 Sep; 27(26):33270-33296. PubMed ID: 32529626
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Adsorption of nickel ions from electroplating effluent by graphene oxide and reduced graphene oxide.
    Rajivgandhi G; Rtv V; Nandhakumar R; Murugan S; Alharbi NS; Kadaikunnan S; Khaled JM; Alanzi KF; Li WJ
    Environ Res; 2021 Aug; 199():111322. PubMed ID: 34019895
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.