These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
308 related articles for article (PubMed ID: 34323948)
1. Learning embedding features based on multisense-scaled attention architecture to improve the predictive performance of anticancer peptides. He W; Wang Y; Cui L; Su R; Wei L Bioinformatics; 2021 Dec; 37(24):4684-4693. PubMed ID: 34323948 [TBL] [Abstract][Full Text] [Related]
2. ACPred-Fuse: fusing multi-view information improves the prediction of anticancer peptides. Rao B; Zhou C; Zhang G; Su R; Wei L Brief Bioinform; 2020 Sep; 21(5):1846-1855. PubMed ID: 31729528 [TBL] [Abstract][Full Text] [Related]
3. ACPred-FL: a sequence-based predictor using effective feature representation to improve the prediction of anti-cancer peptides. Wei L; Zhou C; Chen H; Song J; Su R Bioinformatics; 2018 Dec; 34(23):4007-4016. PubMed ID: 29868903 [TBL] [Abstract][Full Text] [Related]
4. ACPred: A Computational Tool for the Prediction and Analysis of Anticancer Peptides. Schaduangrat N; Nantasenamat C; Prachayasittikul V; Shoombuatong W Molecules; 2019 May; 24(10):. PubMed ID: 31121946 [TBL] [Abstract][Full Text] [Related]
5. Large-scale comparative review and assessment of computational methods for anti-cancer peptide identification. Liang X; Li F; Chen J; Li J; Wu H; Li S; Song J; Liu Q Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33316035 [TBL] [Abstract][Full Text] [Related]
6. ACPred-BMF: bidirectional LSTM with multiple feature representations for explainable anticancer peptide prediction. Han B; Zhao N; Zeng C; Mu Z; Gong X Sci Rep; 2022 Dec; 12(1):21915. PubMed ID: 36535969 [TBL] [Abstract][Full Text] [Related]
7. ACP-PDAFF: Pretrained model and dual-channel attentional feature fusion for anticancer peptides prediction. Wang X; Wang S Comput Biol Chem; 2024 Oct; 112():108141. PubMed ID: 38996756 [TBL] [Abstract][Full Text] [Related]
8. CAPTURE: Comprehensive anti-cancer peptide predictor with a unique amino acid sequence encoder. Ghafoor H; Asim MN; Ibrahim MA; Ahmed S; Dengel A Comput Biol Med; 2024 Jun; 176():108538. PubMed ID: 38759585 [TBL] [Abstract][Full Text] [Related]
9. PLMACPred prediction of anticancer peptides based on protein language model and wavelet denoising transformation. Arif M; Musleh S; Fida H; Alam T Sci Rep; 2024 Jul; 14(1):16992. PubMed ID: 39043738 [TBL] [Abstract][Full Text] [Related]
10. ACP-MHCNN: an accurate multi-headed deep-convolutional neural network to predict anticancer peptides. Ahmed S; Muhammod R; Khan ZH; Adilina S; Sharma A; Shatabda S; Dehzangi A Sci Rep; 2021 Dec; 11(1):23676. PubMed ID: 34880291 [TBL] [Abstract][Full Text] [Related]
11. mACPpred 2.0: Stacked Deep Learning for Anticancer Peptide Prediction with Integrated Spatial and Probabilistic Feature Representations. Sangaraju VK; Pham NT; Wei L; Yu X; Manavalan B J Mol Biol; 2024 Sep; 436(17):168687. PubMed ID: 39237191 [TBL] [Abstract][Full Text] [Related]
12. Iterative feature representations improve N4-methylcytosine site prediction. Wei L; Su R; Luan S; Liao Z; Manavalan B; Zou Q; Shi X Bioinformatics; 2019 Dec; 35(23):4930-4937. PubMed ID: 31099381 [TBL] [Abstract][Full Text] [Related]
13. iDNA-ABT: advanced deep learning model for detecting DNA methylation with adaptive features and transductive information maximization. Yu Y; He W; Jin J; Xiao G; Cui L; Zeng R; Wei L Bioinformatics; 2021 Dec; 37(24):4603-4610. PubMed ID: 34601568 [TBL] [Abstract][Full Text] [Related]
14. Effective identification and differential analysis of anticancer peptides. Zhang L; Hu X; Xiao K; Kong L Biosystems; 2024 Jul; 241():105246. PubMed ID: 38848816 [TBL] [Abstract][Full Text] [Related]
15. PSSP-MVIRT: peptide secondary structure prediction based on a multi-view deep learning architecture. Cao X; He W; Chen Z; Li Y; Wang K; Zhang H; Wei L; Cui L; Su R; Wei L Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34117740 [TBL] [Abstract][Full Text] [Related]
16. MA-PEP: A novel anticancer peptide prediction framework with multimodal feature fusion based on attention mechanism. Liang X; Zhao H; Wang J Protein Sci; 2024 Apr; 33(4):e4966. PubMed ID: 38532681 [TBL] [Abstract][Full Text] [Related]
17. Prediction of anticancer peptides based on an ensemble model of deep learning and machine learning using ordinal positional encoding. Yuan Q; Chen K; Yu Y; Le NQK; Chua MCH Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36642410 [TBL] [Abstract][Full Text] [Related]
18. CACPP: A Contrastive Learning-Based Siamese Network to Identify Anticancer Peptides Based on Sequence Only. Yang X; Jin J; Wang R; Li Z; Wang Y; Wei L J Chem Inf Model; 2024 Apr; 64(7):2807-2816. PubMed ID: 37252890 [TBL] [Abstract][Full Text] [Related]
19. PeNGaRoo, a combined gradient boosting and ensemble learning framework for predicting non-classical secreted proteins. Zhang Y; Yu S; Xie R; Li J; Leier A; Marquez-Lago TT; Akutsu T; Smith AI; Ge Z; Wang J; Lithgow T; Song J Bioinformatics; 2020 Feb; 36(3):704-712. PubMed ID: 31393553 [TBL] [Abstract][Full Text] [Related]
20. SkipCPP-Pred: an improved and promising sequence-based predictor for predicting cell-penetrating peptides. Wei L; Tang J; Zou Q BMC Genomics; 2017 Oct; 18(Suppl 7):742. PubMed ID: 29513192 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]