These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
308 related articles for article (PubMed ID: 34323948)
21. ACP-DA: Improving the Prediction of Anticancer Peptides Using Data Augmentation. Chen XG; Zhang W; Yang X; Li C; Chen H Front Genet; 2021; 12():698477. PubMed ID: 34276801 [TBL] [Abstract][Full Text] [Related]
22. Exploring sequence-based features for the improved prediction of DNA N4-methylcytosine sites in multiple species. Wei L; Luan S; Nagai LAE; Su R; Zou Q Bioinformatics; 2019 Apr; 35(8):1326-1333. PubMed ID: 30239627 [TBL] [Abstract][Full Text] [Related]
23. G-ACP: a machine learning approach to the prediction of therapeutic peptides for gastric cancer. Azad H; Akbar MY; Sarfraz J; Haider W; Riaz MN; Ali GM; Ghazanfar S J Biomol Struct Dyn; 2024 Mar; ():1-14. PubMed ID: 38450672 [TBL] [Abstract][Full Text] [Related]
24. ACPScanner: Prediction of Anticancer Peptides by Integrated Machine Learning Methodologies. Zhong G; Deng L J Chem Inf Model; 2024 Feb; 64(3):1092-1104. PubMed ID: 38277774 [TBL] [Abstract][Full Text] [Related]
25. Comparative analysis and prediction of quorum-sensing peptides using feature representation learning and machine learning algorithms. Wei L; Hu J; Li F; Song J; Su R; Zou Q Brief Bioinform; 2020 Jan; 21(1):106-119. PubMed ID: 30383239 [TBL] [Abstract][Full Text] [Related]
26. ACP-Dnnel: anti-coronavirus peptides' prediction based on deep neural network ensemble learning. Liu M; Liu H; Wu T; Zhu Y; Zhou Y; Huang Z; Xiang C; Huang J Amino Acids; 2023 Sep; 55(9):1121-1136. PubMed ID: 37402073 [TBL] [Abstract][Full Text] [Related]
27. PEPred-Suite: improved and robust prediction of therapeutic peptides using adaptive feature representation learning. Wei L; Zhou C; Su R; Zou Q Bioinformatics; 2019 Nov; 35(21):4272-4280. PubMed ID: 30994882 [TBL] [Abstract][Full Text] [Related]
28. ToxIBTL: prediction of peptide toxicity based on information bottleneck and transfer learning. Wei L; Ye X; Sakurai T; Mu Z; Wei L Bioinformatics; 2022 Mar; 38(6):1514-1524. PubMed ID: 34999757 [TBL] [Abstract][Full Text] [Related]
29. Improved prediction and characterization of anticancer activities of peptides using a novel flexible scoring card method. Charoenkwan P; Chiangjong W; Lee VS; Nantasenamat C; Hasan MM; Shoombuatong W Sci Rep; 2021 Feb; 11(1):3017. PubMed ID: 33542286 [TBL] [Abstract][Full Text] [Related]
30. ACP-check: An anticancer peptide prediction model based on bidirectional long short-term memory and multi-features fusion strategy. Zhu L; Ye C; Hu X; Yang S; Zhu C Comput Biol Med; 2022 Sep; 148():105868. PubMed ID: 35868046 [TBL] [Abstract][Full Text] [Related]
31. Fast Prediction of Protein Methylation Sites Using a Sequence-Based Feature Selection Technique. Wei L; Xing P; Shi G; Ji Z; Zou Q IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(4):1264-1273. PubMed ID: 28222000 [TBL] [Abstract][Full Text] [Related]
32. GRAM-CNN: a deep learning approach with local context for named entity recognition in biomedical text. Zhu Q; Li X; Conesa A; Pereira C Bioinformatics; 2018 May; 34(9):1547-1554. PubMed ID: 29272325 [TBL] [Abstract][Full Text] [Related]
33. Enhancer-FRL: Improved and Robust Identification of Enhancers and Their Activities Using Feature Representation Learning. Wang C; Zou Q; Ju Y; Shi H IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(2):967-975. PubMed ID: 36063523 [TBL] [Abstract][Full Text] [Related]
34. Predicting protein-peptide binding residues via interpretable deep learning. Wang R; Jin J; Zou Q; Nakai K; Wei L Bioinformatics; 2022 Jun; 38(13):3351-3360. PubMed ID: 35604077 [TBL] [Abstract][Full Text] [Related]
35. MDTL-ACP: Anticancer Peptides Prediction Based on Multi-Domain Transfer Learning. Cao J; Zhou W; Yu Q; Ji J; Zhang J; He S; Zhu Z IEEE J Biomed Health Inform; 2023 Dec; PP():. PubMed ID: 38147420 [TBL] [Abstract][Full Text] [Related]
36. Chromatin accessibility prediction via convolutional long short-term memory networks with k-mer embedding. Min X; Zeng W; Chen N; Chen T; Jiang R Bioinformatics; 2017 Jul; 33(14):i92-i101. PubMed ID: 28881969 [TBL] [Abstract][Full Text] [Related]
37. Anticancer peptides prediction with deep representation learning features. Lv Z; Cui F; Zou Q; Zhang L; Xu L Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33529337 [TBL] [Abstract][Full Text] [Related]
38. ACP-DL: A Deep Learning Long Short-Term Memory Model to Predict Anticancer Peptides Using High-Efficiency Feature Representation. Yi HC; You ZH; Zhou X; Cheng L; Li X; Jiang TH; Chen ZH Mol Ther Nucleic Acids; 2019 Sep; 17():1-9. PubMed ID: 31173946 [TBL] [Abstract][Full Text] [Related]
39. ACP-CapsPred: an explainable computational framework for identification and functional prediction of anticancer peptides based on capsule network. Yao L; Xie P; Guan J; Chung CR; Zhang W; Deng J; Huang Y; Chiang YC; Lee TY Brief Bioinform; 2024 Jul; 25(5):. PubMed ID: 39293807 [TBL] [Abstract][Full Text] [Related]
40. ACP-ESM: A novel framework for classification of anticancer peptides using protein-oriented transformer approach. Kilimci ZH; Yalcin M Artif Intell Med; 2024 Oct; 156():102951. PubMed ID: 39173421 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]