These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 34323972)
1. Shifting proteomes: limitations in using the BioID proximity labeling system to study SNARE protein trafficking during infection with intracellular pathogens. Jorgenson LM; Olson-Wood MG; Rucks EA Pathog Dis; 2021 Aug; 79(7):. PubMed ID: 34323972 [TBL] [Abstract][Full Text] [Related]
2. A meta-analysis of affinity purification-mass spectrometry experimental systems used to identify eukaryotic and chlamydial proteins at the Chlamydia trachomatis inclusion membrane. Olson MG; Ouellette SP; Rucks EA J Proteomics; 2020 Feb; 212():103595. PubMed ID: 31760040 [TBL] [Abstract][Full Text] [Related]
4. The trans-Golgi SNARE syntaxin 6 is recruited to the chlamydial inclusion membrane. Moore ER; Mead DJ; Dooley CA; Sager J; Hackstadt T Microbiology (Reading); 2011 Mar; 157(Pt 3):830-838. PubMed ID: 21109560 [TBL] [Abstract][Full Text] [Related]
5. Vesicle-associated membrane protein 4 and syntaxin 6 interactions at the chlamydial inclusion. Kabeiseman EJ; Cichos K; Hackstadt T; Lucas A; Moore ER Infect Immun; 2013 Sep; 81(9):3326-37. PubMed ID: 23798538 [TBL] [Abstract][Full Text] [Related]
6. The trans-Golgi SNARE syntaxin 10 is required for optimal development of Chlamydia trachomatis. Lucas AL; Ouellette SP; Kabeiseman EJ; Cichos KH; Rucks EA Front Cell Infect Microbiol; 2015; 5():68. PubMed ID: 26442221 [TBL] [Abstract][Full Text] [Related]
7. Proximity Labeling of the Chlamydia trachomatis Inclusion Membrane. Olson MG; Jorgenson LM; Widner RE; Rucks EA Methods Mol Biol; 2019; 2042():245-278. PubMed ID: 31385281 [TBL] [Abstract][Full Text] [Related]
8. Differential interaction with endocytic and exocytic pathways distinguish parasitophorous vacuoles of Coxiella burnetii and Chlamydia trachomatis. Heinzen RA; Scidmore MA; Rockey DD; Hackstadt T Infect Immun; 1996 Mar; 64(3):796-809. PubMed ID: 8641784 [TBL] [Abstract][Full Text] [Related]
9. The eukaryotic signal sequence, YGRL, targets the chlamydial inclusion. Kabeiseman EJ; Cichos KH; Moore ER Front Cell Infect Microbiol; 2014; 4():129. PubMed ID: 25309881 [TBL] [Abstract][Full Text] [Related]
10. Proximity-dependent proteomics of the Chlamydia trachomatis inclusion membrane reveals functional interactions with endoplasmic reticulum exit sites. Dickinson MS; Anderson LN; Webb-Robertson BM; Hansen JR; Smith RD; Wright AT; Hybiske K PLoS Pathog; 2019 Apr; 15(4):e1007698. PubMed ID: 30943267 [TBL] [Abstract][Full Text] [Related]
11. Syntaxin 11 Contributes to the Interferon-Inducible Restriction of Coxiella burnetii Intracellular Infection. Ganesan S; Alvarez NN; Steiner S; Fowler KM; Corona AK; Roy CR mBio; 2023 Feb; 14(1):e0354522. PubMed ID: 36728431 [TBL] [Abstract][Full Text] [Related]
12. Development of a Proximity Labeling System to Map the Rucks EA; Olson MG; Jorgenson LM; Srinivasan RR; Ouellette SP Front Cell Infect Microbiol; 2017; 7():40. PubMed ID: 28261569 [No Abstract] [Full Text] [Related]
13. Chlamydia trachomatis CT229 Subverts Rab GTPase-Dependent CCV Trafficking Pathways to Promote Chlamydial Infection. Faris R; Merling M; Andersen SE; Dooley CA; Hackstadt T; Weber MM Cell Rep; 2019 Mar; 26(12):3380-3390.e5. PubMed ID: 30893609 [TBL] [Abstract][Full Text] [Related]
14. High-Content Imaging Reveals Expansion of the Endosomal Compartment during Larson CL; Heinzen RA Front Cell Infect Microbiol; 2017; 7():48. PubMed ID: 28293541 [No Abstract] [Full Text] [Related]
15. Identification of Interactions in the NMD Complex Using Proximity-Dependent Biotinylation (BioID). Schweingruber C; Soffientini P; Ruepp MD; Bachi A; Mühlemann O PLoS One; 2016; 11(3):e0150239. PubMed ID: 26934103 [TBL] [Abstract][Full Text] [Related]
16. AirID, a novel proximity biotinylation enzyme, for analysis of protein-protein interactions. Kido K; Yamanaka S; Nakano S; Motani K; Shinohara S; Nozawa A; Kosako H; Ito S; Sawasaki T Elife; 2020 May; 9():. PubMed ID: 32391793 [TBL] [Abstract][Full Text] [Related]
17. The Proteome of the Isolated Chlamydia trachomatis Containing Vacuole Reveals a Complex Trafficking Platform Enriched for Retromer Components. Aeberhard L; Banhart S; Fischer M; Jehmlich N; Rose L; Koch S; Laue M; Renard BY; Schmidt F; Heuer D PLoS Pathog; 2015 Jun; 11(6):e1004883. PubMed ID: 26042774 [TBL] [Abstract][Full Text] [Related]
18. A Functional Core of IncA Is Required for Chlamydia trachomatis Inclusion Fusion. Weber MM; Noriea NF; Bauler LD; Lam JL; Sager J; Wesolowski J; Paumet F; Hackstadt T J Bacteriol; 2016 Apr; 198(8):1347-55. PubMed ID: 26883826 [TBL] [Abstract][Full Text] [Related]
19. Two coiled-coil domains of Chlamydia trachomatis IncA affect membrane fusion events during infection. Ronzone E; Paumet F PLoS One; 2013; 8(7):e69769. PubMed ID: 23936096 [TBL] [Abstract][Full Text] [Related]
20. Chlamydia trachomatis and its interaction with the cellular retromer. Banhart S; Rose L; Aeberhard L; Koch-Edelmann S; Heuer D Int J Med Microbiol; 2018 Jan; 308(1):197-205. PubMed ID: 29122514 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]